Tính :
( 2a + b - 5 ) x ( 2a - b + 5 )
Tính :
a) ( 3b + 5a/6 ) ^2
b) ( 5x - y ) ^2
c) ( 2a + b - 5 ) ( 2a - b + 5 )
d) ( x ^2 + 2/5y ) ( x^2 - 2/5y )
Tính :
a) ( 3b + 5a/6 ) ^2 b) ( 5x - y ) ^2
c) ( 2a + b - 5 ) ( 2a - b + 5 ) d) ( x^ 2 + 2/5 y ) ( x^2 - 2/5 y )
1) tìm x17-(x-5)+2x-1=7-(10-13)
2)A) tìm a,b,c,d khác 0 biết 2a/3b = 3b/4c = 4c/5d = 5d/2a
B) tính C=2a/3b+3b/4c+4c/5d+5d/2a
rút gọn : a) 5.(2x-1)^2+4(x-1)(x+3)-2(5-3x)^2
b) (2a^2+2a+1)(2a^2-2a+1)=(2a^2+1)^2
1. Rút gọn các biểu thức sau:
M = (2a+b)2-(b-2a)2
N = (3a+2)2+2a(1-2b)+(2b-1)2
A = (m-n)2+4mn
2. Tính:
a) (x+5)2 b) (5/2-t)2
c) (2u+3v)2 d) (-1/8 a+2/3 bc)2
e) (x/y-1/z)2 f) (mn/4-x/6)(mn/4+x/6)
Bài 2:
a) \(\left(x+5\right)^2=x^2+10x+25\)
b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)
d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)
e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)
f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)
Bài 1:
$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$
$=4a.2b=8ab$
$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$
$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$
$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$
$=m^2+2mn+n^2=(m+n)^2$
Bài 1:
a: Ta có: \(M=\left(2a+b\right)^2-\left(b-2a\right)^2\)
\(=4a^2+4ab+b^2-b^2+4ab-4a^2\)
\(=8ab\)
b: Ta có: \(N=\left(3a+2\right)^2+2a\left(1-2b\right)+\left(2b-1\right)^2\)
\(=\left(3a+2+1-2b\right)^2\)
\(=\left(3a-2b+3\right)^2\)
\(=9a^2+4b^2+9-12ab+18a-12b\)
c: Ta có: \(A=\left(m-n\right)^2+4nm\)
\(=m^2-2mn+n^2+4mn\)
\(=m^2+2mn+n^2\)
\(=\left(m+n\right)^2\)
2:
a: \(\left(x+5\right)^2=x^2+10x+25\)
b: \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
BT1 Làm Tính Nhân
a) (-4x+2).(x-5)
b) (x-3).(x+3)
c) (x+3.(x2-3x+9)
d) (2x-1).(-x-3)
e) (2a+1).(4a2-2a+1)
f) (-x-1).(x+2).(x-3)
a: \(=-4x^2+20x+2x-10=-4x^2+22x-10\)
b: =x^2-9
c: =x^3+27
d: \(=-2x^2-6x+x+3=-2x^2-5x+3\)
e: =8a^3+1
f: =(3-x)(x+1)(x+2)
=(3-x)(x^2+3x+2)
=3x^2+9x+6-x^3-3x^2-2x
=-x^3+7x+6
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a.
\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)
\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)
b.
\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)
c.
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)
\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)
\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)
\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)
(2a+b-5)(2a-b+5)
\(\left(2a+b-5\right)\left(2a-b+5\right)\)
\(=\left[2a+\left(b-5\right)\right]\left[2a-\left(b-5\right)\right]\)
\(=4a^2-\left(b-5\right)^2\)
\(=4a^2-\left(b^2-10b+25\right)\)
\(=4a^2-b^2+10b-25\)
\(\left(2a+b-5\right)\left(2a-b+5\right)\)
\(=\left(2a\right)^2-\left(b-5\right)^2\)
\(=4a^2-\left(b-5\right)^2\)