cho tam giác ABC vuông tại A . Biết cos B = 0,8 ; hãy tính các tỉ số lượng giác của góc C
Cho tam giác abc vuông tại a biết sin B=0,8. Tính cos B và cos C
cho tam giác ABC vuông tại A. Biết cos B=0,8. Hãy tính các tỉ số lượng giác của góc C
Vì tam giác ABC vuông tại A nên góc C nhọn. Vì thế:
sinC>0;cosC>0;tanC>0;cotC>0sinC>0;cosC>0;tanC>0;cotC>0
Vì hai góc B và C phụ nhau nên sinC = cosB = 0,8.
Ta có:
Sin2C+cos2C=1Sin2C+cos2C=1
⇒cos2C=1−sin2C=1−(0,8)2=0,36⇒cos2C=1−sin2C=1−(0,8)2=0,36
⇒cosC=0,6;⇒cosC=0,6;
tgC=sinCcosC=0,80,6=43;tgC=sinCcosC=0,80,6=43;
cotgC=cosCsinC=0,60,8=34
Cho tam giác ABC vuông tại A. Biết \(\cos B=0,8\), hãy tính các tỉ số lượng giác của góc C
Gợi ý : Sử dụng bài tập 14
Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.
Ta có:
Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.
Hướng dẫn giải:
Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.
Ta có: Sin2C+cos2C=1⇒cos2C=1−sin2C=1−(0,8)2=0,36
⇒cosC=0,6;tgC=sinCcosC=0,80,6=43;cotgC=cosCsinC=0,60,8=34
Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.
cho tam giác vuông ABC vuông tại A. Biết sin B = 3/4 . Tinh cos B , cos C
Có : ΔABC vuông tại A => sinB = cosC = \(\frac{3}{4}\)
Mà lại có : sin2 B + cos2B = 1
=> cos2B = 1 - sin2B
=> cosB = 1 - \(\frac{3}{4}\)= \(\frac{1}{4}\)
Cho tam giác ABC góc A = 90 do,biết cos B =0,8. Hãy tan B?
1+tan^2B=1/cos^2B=1:0,64=1:16/25=25/16
=>tan^2B+9/16
=>tan B=3/4
Bài 1. Chi tam giác ABC vuông tại A phân giác AD, đường cao AH biết CD= 68cm, BD=51cm. Tính BH,HC
Bài 2 . Cho tam giác ABC vuông tại A đường cao AH biết AB=7,5cm, AH=6cm.
a, Tính AC,BC
b, Tính Cos B, Cos C
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
1. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=4cm,AC=9cm. Tính sin B, sin C
2.Cho tam giác ABC vuông tại A, Cos B= an pha, Cos = 4/5. Tính sin, tan,cos
3. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=6cm, BC= 10cm
a. Tính AC,AH. Tỉ số đồng giác góc B,C
b. Gọi E,F lần lượt là hình chiếu H lên AB,AC. CM :AE.AD=AF.AC
c. Tính S tứ giác AEHF
Cho tam giác ABC vuông tại C. Biết sin B = 1/3, tính cos A
cho tam giác ABC vuông tại A. Đường cao AH. Biết AB = 7,5 cm; AH =6cm . Tính AC; BC ; cos B ; cos C
\(AB^2=AH.BC\Rightarrow BC=\frac{AB^2}{AH}=\frac{7,5^2}{6}=9,375\)
áp dụng định lí Pytago tính được AC = 5,625
tính cosB và cos C thì quá dễ rồi. bạn làm tiếp nhé
Cho tam giác ABC vuông tại A, biết cosB=0,8. Thì tỉ số lượng giác cosC
\(\cos B=\sin C=0,8\\ \Leftrightarrow\cos C=\sqrt{1-\sin^2C}=\sqrt{1-0,8^2}=0,6\)
Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8
Từ công thức sin2C + cos2C = 1 ta suy ra: