Tìm giá trị lớn nhất của đa thức:
\(E=\dfrac{5}{2x^2+3x+5}\)
\(F=\dfrac{-2}{4x-x^2-5}\)
Tìm giá trị lớn nhất của đa thức:
\(E=\dfrac{5}{2x^2+3x+5}\)
\(F=\dfrac{-2}{4x-x^2-5}\)
\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)
Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)
\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)
Nên GTLN của F là 2 đạt được khi \(x=2\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
Tìm giá trị lớn nhất hoặc nhỏ nhất của các đa thức sau:
A =\(\dfrac{37}{x^2-2x+3}\) B \(=\dfrac{-26}{x^2-5x+10}\) C \(=\dfrac{-2023}{x^2-x+6}\) D \(=\dfrac{0,75}{x^2+x+5}\) E \(=\dfrac{13}{2x^2-x+37}\) F \(=\dfrac{-61}{3x^2-x+19}\)
Tìm giá trị lớn nhất (GTNN) của các biểu thức sau:
A= \(\dfrac{4+5\left|1-2x\right|}{7}\)
B= \(\dfrac{x^2+4x-6}{3}\)
C= \(\dfrac{5}{x^2-2x+3}\)
Tìm giá trị nhỏ nhất của biểu thức E = \(\dfrac{5-3x}{4x-8}\)(x ∈ Z, x ≠ 2)
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)
Tìm giá trị lớn nhất của biểu thức sau:
a) |x-3| - |5-x|
b) D = -|x + \(\dfrac{5}{2}\)|
c) P =4 - |5x-2| - |3y + 12|
d) G = 5,5 - |2x - 1,5|
e) E = -|10,2 - 3x| - 14,2
c) Ta có: \(\left|5x-2\right|\ge0\forall x\)
\(\left|3y+12\right|\ge0\forall y\)
Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
tìm giá trị nhỏ nhất của biểu thức E=\(\dfrac{5-3x}{4x-8}\)(xϵz, x≠2)
Tìm nghiệm của các đa thức sau:
a) -6x + 5
b)x2 - 2x
c)-\(\dfrac{5}{3}x+\dfrac{3}{5}\)
d)\(x^{2^{ }}-4x+3\)
e)\(2x^2-4x+5\)
f)\(3x^3+x^2\)
tìm giá trị lớn nhawts, giá trị nhỏ nhất ( nếu có) của các đa thức sau:
a)\(A\left(x\right)=\left(x+2\right)^2-4 \)
b)\(B\left(x\right)=4x^2+4x+3\)
c)\(C\left(x\right)=5-\left(x-2\right)^2\)
d)\(D\left(x\right)=-3x^2+6x+10\)
e)\(E\left(x\right)=\dfrac{2}{x^2+5}\)
f)\(F\left(x\right)=\dfrac{-1}{x^2+2x+3}\)
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên