Phân tích thành nhân tử ( phương pháp dùng hằng đẳng thức )
1) 8x6 - 27y3
2) ( x + 3 )3 - 8
3) x6 - y6
4) x3 + 12x2 + 48x + 64
5) 125 - 75m + 9m2 - m3
CÁC BẠN GIẢI CHO MÌNH 5 CÂU ĐÓ NHA. MÌNH ĐAG CẦN GẤP LẮM
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a/ $=(x-2)^2$
b/ $=(2x+1)^2$
c/ $=(4x-3y)(4x+3y)$
d/ $=(1-x)(x+7)$
e/ $=(-x+1)(5x-1)$
f/ $=(x-y)(x^2+xy+y^2)$
g/ $=(3+x)(9-3x+x^2)$
h/ $=(x+2)^3$
i/ $=(1-x)^3$
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức: x3+64
Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức )
1) 8x6 - 27y3
2) ( x + 3 )3 - 8
3) x6 - y6
4) x3 + 12x2 + 48x + 64
5) 125 - 75m + 9m2 - m3
CÁC BẠN GIẢI GẤP CHO MÌNH NHA. MÌNH ĐAG CẦN GẤP
Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức )
3) x6 - y6
= (x3)2 - (y3)2
= (x3 - y3).(x3 + y3)
Phân tích thành nhân tử ( phương pháp dùng hằng đẳng thức )
1) 125m - 75m + 9m2 - m3
2) x3+ 15x2 + 75x + 125
3) 81a2 - ( 5a - 3b )2
4) x9 + 1
5) ( x + 4 )3- 64
6) x3 - ( y - 1 )3
3)(9a)2-(5a-3b)2
= (9a-5a+3b)(9a+5a-3b)
= (4a+3b)(14a-3b)
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
8x^3 - 125
8x3- 125= (2x)3- 53= (2x-5)[(2x)2+2x5+52 ]=(2x-5)(4x2+10x+25)
\(8x^3-125\)
\(=\left(2x\right)^3-5^3\)
\(=\left(2x-5\right)\left(4x^2+10x+25\right)\)
Áp dụng hằng đẳng thức thứ 7
\(8x^3-125\)
\(=\left(2x\right)^3-5^3\)
\(\left(2x-5\right)\left(4x^2-10x+25\right)\)
Phân tích các đa thức sau thành nhân tử bằng hằng đẳng thức:
1. (x+1)^3-125
2. (x+4)^3-64
3. x^3-(y-1)^3
4. (a+b)^3-c^3
5. 125-(x+2)^3
6. 27(x+3)^3-8
7. (x+1)^3+(x-2)^3
1. \(\left(x+1\right)^3-125\)
\(=\left(x+1\right)^3-5^3\)
\(=\left(x+1-5\right).\left[\left(x+1\right)^2+\left(x+1\right).5+5^2\right]\)
2. \(\left(x+4\right)^3-64\)
\(=\left(x+4\right)^3-4^3\)
\(=\left(x+4-4\right).\left[\left(x+4\right)^2+\left(x+4\right).4+4^2\right]\)
3. \(x^3-\left(y-1\right)^3\)
\(=(x^3-y+1).\left[\left(x^2\right)+x.\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\)4. \(\left(a+b\right)^3-c^3\)
\(=\left[\left(a+b\right)-c\right].\left[\left(a+b\right)^2+\left(a+b\right).c+c^2\right]\)
5. \(125-\left(x+2\right)^3\)
\(=5^3-\left(x+2\right)^3\)
\(=\left(5-x-2\right).\left[5^2+5.\left(x+2\right)+\left(x+2\right)^2\right]\)
6. \(\left(x+1\right)^3+\left(x-2\right)^3\)
\(=\left[\left(x+1\right)+\left(x-2\right)\right].\left[\left(x+1\right)^2-\left(x+1\right).\left(x-2\right)+\left(x-2\right)^2\right]\)