Tìm x,y
a, 2x+1 x 3y = 12x
b, 10x : 5y = 20y
tìm x,y,z biết: 12x-20y/2012=30z-12x/2013=20y-30z/2014 và 2x+3y+4z=54
tìm x,y:
a) 2x+1.3y=12x
b) 10x:5y=20y
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
2x+1.3y=12x => 2x+1.3y=4x.3x
=> 2x+1.3y=22x.3x => x + 1 = 2x và y = x
=> x = 1 và y = x = 1
Vậy x=y=1
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)
b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)
\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)
\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)
\(=\left(5y-3x\right)\left(5y+3x\right)\)
\(=25y^2-9x^2\)
d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)
\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)
\(=\dfrac{9}{4}y^2-x^2\)
e: \(\left(a+b+c\right)\left(a+b-c\right)\)
\(=\left(a+b\right)^2-c^2\)
\(=a^2+2ab+b^2-c^2\)
Giải giúp mình bài này nhé😊
Tìm giá trị nhỏ nhất của:
A=3x2 +y2 +10x-2xy+26
B=4x2 +3y2 - 4x+30y+18
C=3x2 +6y2 - 12x - 20y +31
D=x2 - 2xy +2y2 + 2x -10y +17
E=2x2 + 2xy + 5y2 - 8x - 22y
mk lm mẫu cho bạn 1 phần nhé
a) \(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)
\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)
Dấu "=" xảy ra <=> \(x=y=-2,5\)
Vậy MIN A = 13,5 khi x = y = - 2,5
Đường Quỳnh Giang ơi, làm cho mình các phần C, D, E nhé 😊
Rút gọn biểu thức:
a) 2x(x-3y)+3y(2x + 5y)
b) (5x-3y)(2x+y)-x(10x-y)
c) (x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
a) 2x(x-3y)+3y(2x+5y)
=2x2-6xy+6xy+15y2
=2x2+15y2
b)(5x-3y)(2x+y)-x(10x-y)
=10x2+5xy-6xy-3y2-10x2+xy
=0
c)(x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
=x3-y3-(x3+y3)
=x3-y3-x3-y3
=-2y3
Tìm nghiệm nguyên của các phương trình sau:
a, x- 3y = 5
b,2x -5y = 10
c,11x -20y = 49
chac lam the nay a, x-3y=5
=>x=5+3y
=>y=x-5/3
vậy nghiêm nguyên của pt la x;y = 5+3y ; y=x-5 /3 voi x,y thuoc Z b,c tuong tu
giả sử PT nghiệm X dương, y âm
đặt y = t ( y thuộc Z , y < 0)
<=> x=4-3t
để x>0 và y < 0
=> 4-3t >0 và t<0
<=> -4/3 < t < 0 ( thuộc Z )
=> t = -1 suy ra ng của PT x=1; y=-1
1) Cho các số x,y,z khác 0 thỏa mãn \(\dfrac{2x-3y}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính giá trị biểu thức B=\(\dfrac{12x+5y-3z}{x-3y+2z}\)
2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0
=> 2x=3y; 5y=2z ; 3z=5x => x/3=y/2; y/2=z/5
=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31
x/3 = 3y/6=2z/10 = (x-3y+2z)/7
=> (12x+5y-3z)/ (x-3y+2z)=31/7
Chia đa thức cho đơn thức
a, (8x^4 - 4x^3 +x^2) : 2x^2
b, 2x^4 - x^3 + 3x^2) : (-1/3x^2)
c, (-18x^3y^5 + 12x^2y^2 - 6xy^3) : 6xy
d,(3/4x^3y^6 + 6/5x^4y^5 - 9/10x^5y) : (-3/5x^3y)
giúp mìn với ạ
\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)
\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)
\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)
\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)
Tìm x,y,z biết :
4z-20y/3=10x-3z/4=3y-4x/10 và 2x+3y-z=40
Ta có:
\(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}.\)
\(\Rightarrow\frac{3.\left(4z-10y\right)}{9}=\frac{4.\left(10x-3z\right)}{16}=\frac{10.\left(3y-4x\right)}{100}.\)
\(\Rightarrow\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}=\frac{12z-30y+40x-12z+30y-40x}{9+16+100}=\frac{\left(12z-12z\right)-\left(30y-30y\right)+\left(40x-40x\right)}{125}=\frac{0}{125}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{4z-10y}{3}=0\\\frac{10x-3z}{4}=0\\\frac{3y-4x}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z-10y=0\\10x-3z=0\\3y-4x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z=10y\\10x=3z\\3y=4x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{10}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{10}\\\frac{y}{4}=\frac{x}{3}\end{matrix}\right.\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}.\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}\) và \(2x+3y-z=40.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}=\frac{2x+3y-z}{6+12-10}=\frac{40}{8}=5.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=5\Rightarrow x=5.3=15\\\frac{y}{4}=5\Rightarrow y=5.4=20\\\frac{z}{10}=5\Rightarrow z=5.10=50\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(15;20;50\right).\)
Chúc bạn học tốt!
Tìm cặp số (x;y) thỏa:
a) x2 + 3y2 - 4x + 6y + 7 = 0.
b) 3x2 y2 + 10x - 2xy + 26 = 0.
c) 3x2 + 6y2 - 12x - 20y + 40 = 0.
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)