Phân tích thành nhân tử
\(a-3\sqrt{ab}+2b\) Với \(ab\ge0\)
Với điều kiện \(a,b\ge0\) , phân tích các biểu thức sau thành nhân tử.
a) \(3a-2\sqrt{ab}-b\)
b) \(5a+3\sqrt{ab}-8b\)
a) \(3a-2\sqrt{ab}-b=3a-3\sqrt{ab}+\sqrt{ab}-b\)
\(=3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)=\left(3\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
b) \(5a+3\sqrt{ab}-8b=5a-5\sqrt{ab}+8\sqrt{ab}-8b\)
\(=5\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+8\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(5\sqrt{a}+8\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
a) (\(\sqrt{a}-\sqrt{b}\))(3\(\sqrt{a}+b\))
b) \(\left(\sqrt{a}-\sqrt{b}\right)\left(5\sqrt{a}+8\sqrt{b}\right)\)
a/\(\left(\sqrt{a}-\sqrt{b}\right)\left(3\sqrt{a}+\sqrt{b}\right)\)
b/ \(\left(\sqrt{a}-\sqrt{b}\right)\left(5\sqrt{a}+8\sqrt{b}\right)\)
Phân tích đa thức thành nhân tử
ab^3c^2-a^2b^2c^2+ab^2c^3-a^2bc^3
\(ab^3c^2-a^2b^2c^2+ab^2c^3-a^2bc^3\)
\(=abc^2\left(b^2-ab+abc-ac\right)\)
Phân tích đa thức thành nhân tử( với a,b,x,y là các số không âm)
a)\(xy+y\sqrt{x}+\sqrt{x}+1\)
b) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
Phân tích đa thức thành nhân tử
a^-2b^2+ab+a-2b
Phân tích thành nhân tử biểu thức :
ab+\(b\sqrt{a}+\sqrt{a}+1\) với a≥0
\(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
phân tích đa thức thành nhân tử
a2-2b2+ab+a-2b
Phân tích thành nhân tử a) (a+b+c)(ab+bc+ca)-abc
b) a(a+2b)^3-b(2a+b)^3
Phân tích thành nhân tử :
a). a(b2 + c2 + bc) + b(c2 + a2 + ac) + c(a2 + b2 + ab);
b). (a + b + c) (ab + bc + ca) - abc
c*). a(a + 2b)3 - b(2a + b)3.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)