tìm GTNN
\(\sqrt{x+15+8\sqrt{x}-1}+\sqrt{x+15-8\sqrt[]{x}-1}\)
tìm GTNN của
a) \(A=\sqrt{x^2-12x+36}+\sqrt{x^2-16x+64}\)
b) \(B=\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+15-8\sqrt{x-1}}\)
Ta có : \(x+3-4\sqrt{x-1}=\left(\sqrt{x-1}-2\right)^2\)và \(x+15-8\sqrt{x-1}=\left(\sqrt{x-1}-4\right)^2\)
Suy ra: B=\(\sqrt{x-1}-2+\sqrt{x-1}-4=2\sqrt{x-1}-6\)
Ta lại có : \(x-1\ge0\)=>\(B\ge-6\)dấu ''='' xảy ra khi: x-1=0 <=>x=1
Vậy minB=-6 khi x=1
1) Cho M = \(\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
a) Tìm ĐKXĐ của M.
b) Tìm GTNN của M
2) tìm các số nguyên x, y thỏa mãn:
\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)
( Cần gấp!)
tìm MIN của \(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+15-8\sqrt{x-1}}\)
Tìm x, biết
a) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
b) \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
\(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
⇒4(x+1)=8
⇒x+1=2
⇒x=1
a. \(\sqrt{4\left(x+1\right)}=\sqrt{8}\) ĐKXĐ: \(x\ge-1\)
<=> \(\left(\sqrt{4\left(x+1\right)}\right)^2=\left(\sqrt{8}\right)^2\)
<=> 4(x + 1) = 8
<=> 4x + 4 = 8
<=> 4x = -4
<=> x = -1 (TM)
Vậy nghiệm của PT là S = \(\left\{-1\right\}\)
1 Tìm GTNN của biểu thức
C=\(\frac{x+9}{10\sqrt{x}}\)
2 Tìm GTLN của biểu thức E= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
3 Tìm x để \(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
4 Rút họn P
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
3/ Điều kiện xác định bạn tự làm nhé
\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
\(\Leftrightarrow8x+67\sqrt{x}+1=0\)
Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm
Bài 8: Cho biểu thức E =\((\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a/ Tìm x để E = 2.
b/Tính giá trị của E khi x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}-15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\) rút gọn giùm ae
Sửa đề: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)
Ta có: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)
\(=\dfrac{-x+8\sqrt{x}-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{-x+8\sqrt{x}-31-\left(x-25\right)+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{2x-2\sqrt{x}-28-x+25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-3\sqrt{x}+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
1) cho B= \(\dfrac{1-5\sqrt{x}}{x-1}\)
Tìm x thuộc R để B nguyên
2) Tính
+ \(\sqrt{8-2\sqrt{15}}.\left(\sqrt{60}+6\right):2\sqrt{3}\)
+ \(\sqrt{5-\sqrt{21}}-\sqrt{\dfrac{7}{2}}\)
Bài 2:
a: Ta có: \(\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{60}+6\right):2\sqrt{3}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{12}\left(\sqrt{5}+\sqrt{3}\right):2\sqrt{3}\)
\(=2\sqrt{12}:2\sqrt{3}\)
=2
b: Ta có: \(\sqrt{5-\sqrt{21}}-\sqrt{\dfrac{7}{2}}\)
\(=\dfrac{\sqrt{10-2\sqrt{21}}-\sqrt{7}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}-\sqrt{7}}{\sqrt{2}}\)
\(=-\dfrac{\sqrt{6}}{2}\)
cho \(x\ge\sqrt{15}\). tìm GTNN của \(F=x^2+x-\sqrt{\left(x^2-15\right)\left(x-3\right)}-\sqrt{x^2-15}-\sqrt{x-3}-38\)
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...