Chứng tỏ :\(\sqrt[3]{20}+\sqrt[3]{2}-\sqrt[3]{2}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
Chứng tỏ: \(\sqrt[3]{20}+\sqrt[3]{2}+\sqrt[3]{25}=3\sqrt[3]{\sqrt[3]{5}-\sqrt[3]{4}}\)
Chứng tỏ: \(\sqrt[3]{20}+\sqrt[3]{2}-\sqrt[3]{25}=3\sqrt[3]{\sqrt[3]{5}-\sqrt[3]{4}}\)
máy tính sinh ra là để sử dụng trong các trường hợp này :)
Tính:
a/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b/ \(\frac{\sqrt{20+8\sqrt{3}}+\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\$\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
chứng minh các đẳng thức sau
a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
b) \(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}=4\)
\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=2\)
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
Chứng minh \(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
\(\hept{\begin{cases}\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\\\left(3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\end{cases}}\)
Chứng tỏ: \(\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}.9\sqrt{3}-11\sqrt{3}\)
Là một số nguyên.
Chứng tỏ
\(a,\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6
}\)
\(b,\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
c,\(\sqrt{5}+\sqrt{10}>5,3\)
a, \(\sqrt{21}>\sqrt{20}\)
\(-\sqrt{5}>-\sqrt{6}\)
\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b, \(\sqrt{2}< \sqrt{3}\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
Tính
a) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
b)\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)