Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhâm Thị Ngọc Mai
Xem chi tiết
ngonhuminh
1 tháng 1 2017 lúc 0:28

Chịu không giao luu nổi

alibaba nguyễn
1 tháng 1 2017 lúc 13:54

Cứ rút từ từ là ra

Ngoc An Pham
Xem chi tiết
Vũ Phương Hoa
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
Thanh Nhân
Xem chi tiết
Đặng Anh Thư
29 tháng 9 2017 lúc 4:26

ta có: \(\sqrt{2000}< 2001\Rightarrow\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \dfrac{1999+2001}{2}=2000\)

(áp dụng BĐT AM-GM)

lấy tương tự như trên ta có:

\(\sqrt{2\sqrt{3\sqrt{4...........\sqrt{1999\sqrt{2000}}}}}\)< \(\sqrt{2\sqrt{3\sqrt{4.............\sqrt{1999.2001}}}}\)

< \(\sqrt{2\sqrt{3\sqrt{4....\sqrt{1998.2000}}}}........< \sqrt{2.4}< 3\)(ĐPCM)

Phạm Quý Trọng
Xem chi tiết
Nguyễn Anh Quân
10 tháng 11 2017 lúc 21:04

Có : 2 > \(\sqrt{3}\) ; 3 > \(\sqrt{4}\) ; ..... ; 1999 > \(\sqrt{2000}\)

=> VT = \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999\sqrt{2000}}}}}\)<   \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999.1999}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{1999}}}}\) < ........ < \(\sqrt{2\sqrt{3}}\) <  \(\sqrt{2.2}\) = 2

=> ĐPCM

KAl(SO4)2·12H2O
10 tháng 11 2017 lúc 21:11

Ta có: \(n=\sqrt{n^2}=\sqrt{1+n^2-1}=\sqrt{1+n-1.n+1}\)

Áp dụng công thức trên với \(n=4,5,6\)ta có:

\(4=\sqrt{1+3.5}=\sqrt{1+3\sqrt{1+4\sqrt{1+5.7}}}=\sqrt{1+3\sqrt{1+\sqrt{4\sqrt{1+...n-1\sqrt{n+1^2}}}}}\)

\(>\sqrt{3\sqrt{4\sqrt{...2000}}}\)

Do đó: \(\sqrt{2+\sqrt{3\sqrt{4\sqrt{...2000}}}}< \sqrt{2+2}=2\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 22:13

\(VT=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

=2=VP

Vũ Đức Huy
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2021 lúc 18:21

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2}=a\ge0\\\sqrt[3]{y^2}=b\ge0\end{matrix}\right.\)

\(P=\sqrt{a^3+a^2b}+\sqrt{b^3+ab^2}=\sqrt{a^2\left(a+b\right)}+\sqrt{b^2\left(a+b\right)}\)

\(=a\sqrt{a+b}+b\sqrt{a+b}=\left(a+b\right)\sqrt{a+b}\)

\(\Rightarrow P^2=\left(a+b\right)^2\left(a+b\right)=\left(a+b\right)^3\)

\(\Rightarrow\sqrt[3]{P^2}=a+b=\sqrt[3]{x^2}+\sqrt[3]{y^2}\) (đpcm)