\(VT=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
=2=VP
\(VT=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
=2=VP
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
Thực hiện phép tính:
a) \({27^{\frac{2}{3}}} + {81^{ - 0,75}} - {25^{0,5}};\)
b) \({4^{2 - 3\sqrt 7 }}{.8^{2\sqrt 7 }}.\)
Rút gọn biểu thức: \(A = \frac{{{{\left( {{a^{\sqrt 2 - 1}}} \right)}^{1 + \sqrt 2 }}}}{{{a^{\sqrt 5 - 1}}.{a^{3 - \sqrt 5 }}}}\,\,\,\left( {a > 0} \right).\)
Nhận biết lũy thừa với số mũ nguyên
Tính: \({\left( {1,5} \right)^2};{\left( { - \frac{2}{3}} \right)^3};{\left( {\sqrt 2 } \right)^4}.\)
Tính:
a) \(\sqrt[3]{{ - 125}}\);
b) \(\sqrt[4]{{\frac{1}{{81}}}}.\)
Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)
Ta biết rằng \(\sqrt 2 \) là một số vô tỉ và \(\sqrt 2 = 1,4142135624...\)
Gọi \(\left( {{r_n}} \right)\) là dãy số hữu tỉ dùng để xấp xỉ số \(\sqrt 2 ,\) với \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,4142;...\)
a) Dùng máy tính cầm tay, hãy tính: \({3^{{r_1}}};{3^{{r_2}}};{3^{{r_3}}};{3^{{r_4}}}\) và \({3^{\sqrt 2 }}.\)
b) Có nhận xét gì về sai số tuyệt đối giữa \({3^{\sqrt 2 }}\) và \({3^{{r_n}}},\) tức là \(\left| {{3^{\sqrt 2 }} - {3^{{r_n}}}} \right|,\) khi n càng lớn?
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
Tính:
a) \(\sqrt[3]{5}:\sqrt[3]{{625}};\)
b) \(\sqrt[5]{{ - 25\sqrt 5 }}.\)