Cho x và y là hai số thực dương thỏa x + y = 1.Chứng minh rằng :1/(x^2+y^2) +1/xy >= 4+ 2căn(3)
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Cho các số thực dương x, y, z thỏa mãn x+y+z=4 . Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)
Đẳng thức xảy ra <=> x = 2 ; y = z = 1
Cho hai số thực dương x và y thoã mãn điều kiện x+y=1. Chứng minh rằng \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\)
Chỉ cần áp dụng một vài BĐT thôi :)
Có: \(x^2+y^2\ge2xy\)
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)
\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)
Áp dụng các BĐT trên vào CM Bđt cần Cm:
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)
Vậy ... đpcm
cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Ta cần chứng minh:\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta được:
\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\)
Mặt khác, ta có:
\(\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(\left(x+y+xy\right)+\left(y+z+yz\right)+\left(z+x+zx\right)\right)\)
\(\Leftrightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+xy+yz+zx\right)\)Lại có:
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{9}{3}=3\)
\(\Rightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+3\right)=27\)
\(\Rightarrow\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\le3\sqrt{3}\)
\(\Rightarrow\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\dfrac{9}{3\sqrt{3}}=\sqrt{3}\)
Do đó \(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=1\).
Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:
Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)
Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
cho x,y là các số thực dương thỏa mãn 1/x+1/y=2. Chứng minh rằng 5x^2+y-4xy+y^2 lớn hơn hoặc bằng 3