C
ho x, y , z thuộc R . CMR x^2 + y^2 + z^2 >/ xy +yz +xz
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xz+xy}\ge\frac{x^2+y^2+z^2}{xy+yz+xz}\)
BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)
cho x,y,z thoa man x^2=yz;y^2=xz;z^2=xy CMR x=y=z
\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)
cho x^2 + y^2+z^2 = xy+xz+yz . cmr x=y=z
x^2+y^2+z^2= xy+yz+zx
=> 2( x^2+y^2+z^2)= 2( xy+xz+yz)
=> 2x^2+2y^2+2z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2-2xy-2xz-2yz= 0
=> x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=0
=> (x-y)^2+(y-z)^2+(z-x)^2 =0
ta thấy (x-y)^2>= 0
(z-x)^2>=0
(y-z)^2>=0
nên (x-y)^2+(y-z)^2+(z-x)^2 >=0
dấu bằng xảy ra khi và chỉ khi
x-y=0 => x=y
y-z=0=> y=z
z-x=0 => z=x
=> x=y=z
Cho x,y,z dương. Cmr 1/(x-y)^2 +1/(y-z)^2+1/(z-x)^2>=4/(xy+xz+yz)
Cần thêm điều kiện x;y;z đôi một phân biệt và để dấu "=" xảy ra khi thì x;y;z không âm chứ không phải dương
Không mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow xy+yz+zx\ge xy\)
\(\Rightarrow\dfrac{4}{xy+yz+zx}\le\dfrac{4}{xy}\)
Đồng thời:
\(\left(z-x\right)^2=x^2+z\left(z-2x\right)\le x^2\Rightarrow\dfrac{1}{\left(z-x\right)^2}\ge\dfrac{1}{x^2}\)
\(\left(y-z\right)^2=y^2+z\left(z-2y\right)\le y^2\ge\dfrac{1}{\left(y-z\right)^2}\ge\dfrac{1}{y^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{xy}\ge4\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{xy}\ge2\) (hiển nhiên đúng theo AM-GM)
cho (x-y)^2+(y-z)^2+(z-x)^2 = 4*(x^2+y^2+z^2-xy-yz-xz)
CMR: X=Y=Z
x2+y2+z2>xy+yz+xz
với x,y,z thuộc R
x2 + y2 + z2 >= xy + yz + xz ( đề sai nha !)
=> 2x2 + 2y2 +2z2 - 2xy - 2yz - 2xz >= 0 (nhân 2 vế cho 2 rồi đổi vế )
=> (x-y)2 + (x-z)2 + (y-z)2 >= 0
ho x^2 + y^2 + z^2 =xy + yz + xz và z^2015 + y^2015 + z^2015=3^2016 .Tìm x,y,z
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-xz\ne0;z^2-xy\ne0\) thỏa mãn \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\) . CMR \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1)
=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.