tính
a) 2x+3/2-\(\dfrac{\sqrt{13}}{2}\)=0
b)2x+3/2+\(\dfrac{\sqrt{13}}{2}\)=0
Giải PT :
\(\dfrac{13\left(1-2x^2\right)}{\sqrt{1-x^2}}+\dfrac{9\left(1+2x^2\right)}{\sqrt{1+x^2}}=0\)
\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
tính giới hạn của các hàm số sau:
a, limx→0\(\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt{1-x}}\)
b, limx→0(\(\dfrac{1}{x}-\dfrac{1}{x^2}\))
c, limx→+∞ \(\dfrac{x^4-x^3+11}{2x-7}\)
d, limx→5 ( \(\dfrac{7}{\left(x-1\right)^2}.\dfrac{2x+1}{2x-3}\) )
a. Áp dụng công thức L'Hospital:
\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)
b.
\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)
c. Áp dụng quy tắc L'Hospital:
\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)
d.
\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)
tính giới hạn lim(x→0)\(\dfrac{ }{\dfrac{2\sqrt{2x+1}-\sqrt[3]{x^2+x+8}}{x}}\)
=\(\dfrac{a}{b}\)
tính a-2b=?
\(=\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt[]{2x+1}-1\right)+2-\sqrt[3]{x^2+x+8}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2.2x}{\sqrt[]{2x+1}+1}-\dfrac{x\left(x+1\right)}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{2x+1}+1}-\dfrac{x+1}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}\right)\)
\(=\dfrac{23}{12}\)
a) Cho 0<x<y thỏa mãn \(2x^2+2y^2=5xy\). Tính E=\(\dfrac{x^2+y^2}{x^2-y^2}\)
b) Cho x=\(\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\). Tính giá trị biểu thức
P=\(\left(2x^3-6x+2008\right)^{2021}\)
a)
Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$
Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$
Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.
Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:
$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$
Vậy kết quả là $E=-\frac{5}{3}$.
đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$
Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.
bài 1 :cho biểu thức :
A= \(\dfrac{2x-3\sqrt{2}-2}{\sqrt{x}-2}\)
B=\(\dfrac{\sqrt{x^3}-\sqrt{x}+2x+2}{\sqrt{x}+2}\)
với a>0;x\(\ne\)4
a, tính giá trị của A khi x=\(4-2\sqrt{3}\)
b, tìm giá trị x để B= A+1
bài 2 : giải hệ pt
\(\left\{{}\begin{matrix}\sqrt{\dfrac{x+3}{x}}+\dfrac{2y}{y-2}=8\\2\sqrt{\dfrac{x+3}{x}}+\dfrac{3y}{y-2}=13\end{matrix}\right.\)
Bạn ơi, cả hai biểu thức này có ẩn là x chứ đâu có a mà bạn lại ghi là a>0 ???
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
Tính giá trị của biểu thức
A=\(\dfrac{1+2x}{1+\sqrt{1+2x}}+\dfrac{1-2x}{1-\sqrt{1-2x}}\) với x=\(\dfrac{\sqrt{3}}{4}\)
B=\(\dfrac{2b\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}\right)\) và a>0,b>0
C=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
C)
\(2x=\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\Rightarrow 4x^2=\frac{1-a}{a}+\frac{a}{1-a}-2\)
\(\Rightarrow 4(x^2+1)=\frac{1-a}{a}+\frac{a}{1-a}+2=(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}})^2\)
\(\Rightarrow \sqrt{4(x^2+1)}=\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}\)
Khi đó:
\(C=\frac{2a\sqrt{4(1+x^2)}}{\sqrt{4(x^2+1)}-2x}=\frac{2a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}-(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}})}=\frac{a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{a}{1-a}}}\)
\(=\frac{\frac{a(1-a+a)}{\sqrt{a(1-a)}}}{\sqrt{\frac{a}{1-a}}}=1\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP