Tính:
\(\dfrac{3}{1.3}+\dfrac{3}{4.7}+\dfrac{3}{5.7}+......+\dfrac{3}{99.100}\)
\(\dfrac{6}{1.3}+\dfrac{6}{3.5}+\dfrac{6}{5.7}+...+\dfrac{6}{99.100}\)
\(\dfrac{6}{1.3}+\dfrac{6}{3.5}+...+\dfrac{6}{99.100}\\ =3\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.100}\right)\\ =3\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(1-\dfrac{1}{100}\right)\\ =3.\dfrac{99}{100}\\ =\dfrac{297}{100}\)
\(T=\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+....+\dfrac{4}{99.100}\)
T=4/1 . 4/3 + 4/3 . 4/5 + ... + 4/99 . 4/100
T=4/1 - 4/3 + 4/3 - 4/5 + ... + 4/99 - 4/100
T=4/1 - 4/100
T=99/25
tính tổng: A= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\) B= \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{3.7}+...+\dfrac{5}{99.101}\)
C= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) D= \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\) E= \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
C=1/2+1/3+1/3+1/4+....+1/99+1/100
=1/2+1/100
=50/100+1/100
=51/100
Tính hợp lí:
A=\(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
Giúp mik nha mik đang cần rất là gấp nha !!!!!!!!!!
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
Giải:
A=3/1.3+3/3.5+3/5.7+...+3/49.51
A=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)
A=3/2.(1/1-1/3+1/3-1/5+1/5-1/7+...+1/49-1/51)
A=3/2.(1/1-1/51)
A=3/2.50/51
A=25/17
B=1/3+1/32+1/33+...+1/38
3B=1+1/3+1/32+...+1/37
3B-B=(1+1/3+1/32+...+1/37)-(1/3+1/32+1/33+...+1/38)
2B=1-1/38
B=1-1/38 /2
Chúc bạn học tốt!
Tính nhanh:
M= \(\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\)
B = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{99.101}\)
\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(B=2.\frac{100}{101}=\frac{200}{101}\)
1.Tính
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
B=\(\dfrac{3}{5.6}+\dfrac{3}{6.7}+\dfrac{3}{7.8}+.....+\dfrac{3}{101.102}\)
C=\(\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{5.6.7}\)
D=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tính :
a) A = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....+\dfrac{2}{37.39}\)
b) B = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{73.76}\)
a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}\)
Vậy \(A=\dfrac{12}{39}\)
b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=1-\dfrac{1}{76}\)
\(=\dfrac{75}{76}\)
Vậy \(B=\dfrac{75}{76}\)
a) Ta có :
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)
b) Ta có :
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)
\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)
~ Học tốt ~
Tính giá trị biểu thức:
B= \(\dfrac{\left(-2\right)^{24}.3^5-4^{12}.9^2}{8^8.3^5}+\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{301.303}\)
\(B=\dfrac{2^{24}\cdot3^5-2^{24}\cdot3^4}{2^{24}\cdot3^5}+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{301}-\dfrac{1}{303}\)
\(=\dfrac{2^{24}\cdot3^4\left(3-1\right)}{2^{24}\cdot3^5}+\dfrac{302}{303}\)
\(=\dfrac{2}{3}+\dfrac{302}{303}=\dfrac{202+302}{303}=\dfrac{504}{303}\)
=168/101
Bài 5: Tính nhanh tổng sau(nếu có):
M=\(\dfrac{3}{2}\)-\(\dfrac{5}{6}\)+\(\dfrac{7}{12}\)-\(\dfrac{9}{20}\)+\(\dfrac{11}{30}\)-\(\dfrac{13}{42}\)+\(\dfrac{15}{56}\)-\(\dfrac{17}{72}\) ; A=\(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+.....+\(\dfrac{5}{2019.2021}\)
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)