Cho a,b là các số nguyên dương và x+y=10
Tính giá trị biểu thức \(M=\frac{1}{x}+\frac{1}{y}\)
Cho a,b là các số nguyên dương và x+y=10
Tính giá trị biểu thức \(M=\frac{1}{x}+\frac{1}{y}\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}=\frac{10}{xy}\)
Vậy giá trị biểu thức \(M=\frac{10}{xy}\)
Chúc bạn học tốt ~
Cho x;y là các số nguyên dương sao cho : \(A=\frac{x^4+y^4}{15}\)cũng là số nguyên dương . Chứng minh x;y đều chia hết cho 3 và 5. từ đó tính giá trị nhỏ nhất của biểu thức A
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho x,y thỏa mãn \(x^2+y^2=1\) . biểu thức \(A=-11x^2+4y^2+8xy.\) đạt giá trị lớn nhất là M khi \(x=\frac{a}{\sqrt{c}},y=\frac{b}{\sqrt{c}}\) trong đó a,b,c là các số nguyên dương và \(\frac{a}{c},\frac{b}{c}\) tối giản . Tính P = M + a + b + c
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
Cho các số thực dương x,y thỏa mãn x+2y+3xy=3 . Biết rằng biểu thức P= x+y đạt giá trị nhỏ nhất bằng \(\frac{a\sqrt{b}-c}{3}\)
trong đó a,b,c là các số nguyên dương . Gọi S là tập hợp các giá trị của M= a+b+c , tính tổng bình phương các phần tử của S
Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\) ( vì x > 0 )
Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\)
Chứng minh được : \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ...
Cho x,y,z là các số nguyên dương. CMR biểu thức sau không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)
Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)
Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)
Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(A>\frac{x+y+z}{x+y+z}\)
\(A>1\left(1\right)\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)
\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)
\(A< 2\left(2\right)\)
Từ (1) và (2) => 1 < A < 2
=> A không là số nguyên (đpcm)
Ta có :
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrow A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)
\(\Rightarrow A=1-\frac{y}{x+y}+1-\frac{z}{y+z}+1-\frac{x}{z+x}\)
\(\Rightarrow A=3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)\)
Mặt khác vì A nguyên dương
\(\Rightarrow\begin{cases}\frac{x}{x+z}>\frac{x}{x+y+z}\\\frac{y}{y+x}>\frac{y}{x+y+z}\\\frac{z}{z+y}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>1\)
\(\Rightarrow-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< -1\)
\(\Rightarrow3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< 2\left(1\right)\)
Mà \(\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{x+z}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1< A< 2\)
=> A không phải là số nguyên
1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.
2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào bằng 0?
4) Tìm hai số x và y sao cho x + y = xy = x : y (y khác 0).
5) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: a2 + a - p = 0
6) Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA : MB : MC = 1:2:3. Tính số đo góc AMB ?
7) Tìm x,y biết: \(\frac{6}{\left(x-1\right)^2+2}=|y-1|+|y-2|+|y-3|+1\)
8) Cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
So sánh M với \(\frac{1}{12}\)
9) Cho các số nguyên dương a,b,c,d,e thỏa mãn: a2 + b2 + c2 + d2 + e2 chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số.
10) Cho biểu thức: A = \(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
Tính giá trị của biểu thức B = \(4|A|+\frac{1}{3^{100}}\)
9) Cho tam giác ABC có góc A bằng \(^{90^o}\). Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BC + DE.
10) Tam giác ABC cân ở B có góc ABC = \(80^o\). I là một điểm nằm trong tam giác, biết góc IAC = \(10^o\)và góc ICA = \(30^o\). Tính góc AIB = ?
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)\(\Leftrightarrow ab.\left(b+c\right)=bc.\left(a+b\right)\Leftrightarrow ab^2+abc=b^2c+abc\Leftrightarrow ab^2=b^2c\Leftrightarrow a=c\left(b\ne0\right)\)(1)
\(\frac{bc}{b+c}=\frac{ca}{c+a}\Leftrightarrow bc.\left(c+a\right)=ca.\left(b+c\right)\Leftrightarrow bc^2+abc=c^2a+abc\Leftrightarrow b=a\left(c\ne0\right)\)(2)
Từ (1) và (2) => a=b=c
\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=0\)
-------------------------------------------------ngăn cách bài--------------------------------------------
ta có: \(VT=\frac{6}{\left(x-1\right)^2+2}\le3\)(--)
dấu = xảy ra khi x-1=0
=> x=1
\(\left|y-1\right|+\left|y-3\right|=\left|-y+1\right|=\left|y-3\right|\ge\left|-y+1+y-3\right|=2\)(2)
\(\left|y-2\right|\ge0\)(1)
Từ (1) và (2) \(\Rightarrow VP=\left|y-1\right|+\left|y-3\right|+\left|y-2\right|+1\ge3\)(3)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
\(\hept{\begin{cases}\left(-y+1\right).\left(y-3\right)\ge0\\y-2=0\end{cases}\Rightarrow y=2}\)
Mà VT=VP => \(\frac{6}{\left(x-1\right)^2+3}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=3\)
Vậy \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)
cho x,yy là các số thực dương thỏa mãn x+y=1. tính giá trị nhỏ nhất của biểu thức B=\(\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)
\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)
Áp dụng Bđt Cô-si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow B\ge4+2\sqrt{3}\)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)