Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vương Hoàng Ngân

Cho x,y,z là các số nguyên dương. CMR biểu thức sau không có giá trị nguyên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

 

Hoàng Lê Bảo Ngọc
15 tháng 9 2016 lúc 13:56

Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)

Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)

Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)

Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên

 

soyeon_Tiểubàng giải
15 tháng 9 2016 lúc 13:57

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(A>\frac{x+y+z}{x+y+z}\)

\(A>1\left(1\right)\)

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)

\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)

\(A< 2\left(2\right)\)

Từ (1) và (2) => 1 < A < 2

=> A không là số nguyên (đpcm)

 

Isolde Moria
15 tháng 9 2016 lúc 14:03

Ta có :

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(\Rightarrow A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)

\(\Rightarrow A=1-\frac{y}{x+y}+1-\frac{z}{y+z}+1-\frac{x}{z+x}\)

\(\Rightarrow A=3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)\)

Mặt khác vì A nguyên dương

\(\Rightarrow\begin{cases}\frac{x}{x+z}>\frac{x}{x+y+z}\\\frac{y}{y+x}>\frac{y}{x+y+z}\\\frac{z}{z+y}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>1\) 

\(\Rightarrow-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< -1\)

\(\Rightarrow3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< 2\left(1\right)\) 

Mà \(\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{x+z}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow1< A< 2\)

=> A không phải là số nguyên


Các câu hỏi tương tự
nguyễn minh
Xem chi tiết
Huỳnh Ngọc Quỳnh Hoa
Xem chi tiết
bịp Tên
Xem chi tiết
Vương Hàn
Xem chi tiết
Friend
Xem chi tiết
Nguyễn Minh Khuê
Xem chi tiết
Le Thi Viet Chinh
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết