Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)
Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)
Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)
Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(A>\frac{x+y+z}{x+y+z}\)
\(A>1\left(1\right)\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)
\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)
\(A< 2\left(2\right)\)
Từ (1) và (2) => 1 < A < 2
=> A không là số nguyên (đpcm)
Ta có :
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrow A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)
\(\Rightarrow A=1-\frac{y}{x+y}+1-\frac{z}{y+z}+1-\frac{x}{z+x}\)
\(\Rightarrow A=3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)\)
Mặt khác vì A nguyên dương
\(\Rightarrow\begin{cases}\frac{x}{x+z}>\frac{x}{x+y+z}\\\frac{y}{y+x}>\frac{y}{x+y+z}\\\frac{z}{z+y}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>1\)
\(\Rightarrow-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< -1\)
\(\Rightarrow3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< 2\left(1\right)\)
Mà \(\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{x+z}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1< A< 2\)
=> A không phải là số nguyên