Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Friend

Cho x,y,z,t \(_{\in}\) N*

Chững minh M= \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) có giá trị không phải là số tự nhiên

( Gợi ý: CM 1<M<2 cộng thêm mẫu cho dduur x+y+z+t và bớt các mẫu )

Học Giỏi Đẹp Trai
11 tháng 12 2016 lúc 16:06

Bạn ghi sai đề nhé chữa thành :

M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)

Giải

Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)>\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

=> M>1 (1)

Ta lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{x}{y+z+t}< \frac{x+y}{x+y+z+t}\)

\(\frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}=\frac{y}{y+z+t}=\frac{z}{z+t+x}=\frac{t}{t+x+y}\)<

\(\frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}=\frac{t+z}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)=> M<2 (2)

Từ (1) và (2) => 1<M<2

=> M không phải là số tự nhiên

 

 


Các câu hỏi tương tự
123456
Xem chi tiết
bịp Tên
Xem chi tiết
Thiên Tỉ ca ca
Xem chi tiết
Khánh Huyền $$$
Xem chi tiết
Thúi Thị Thơm
Xem chi tiết
Vũ Ngọc Minh Anh
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Minh Hoang Hai
Xem chi tiết
Đăng Khoa
Xem chi tiết