Tìm GTNN của phân số ( n ϵ Z )
a) \(\dfrac{3}{n-2}\)
b)\(\dfrac{1-n}{4-n}\)
Tìm n ϵ Z, để các phân số sau có giá trị là số tự nhiên
a) \(\dfrac{n+2}{3}\) b) \(\dfrac{7}{n-1}\) c) \(\dfrac{n+1}{n-1}\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
a: Để A là phân số thì 2n+3<>0
=>2n<>-3
=>\(n<>-\frac32\)
b: Để A là số nguyên thì 19n+1⋮2n+3
=>38n+2⋮2n+3
=>38n+57-55⋮2n+3
=>-55⋮2n+3
=>2n+3∈{1;-1;5;-5;11;-11;55;-55}
=>2n∈{-2;-4;2;-8;8;-14;52;-58}
=>n∈{-1;-2;1;-4;4;-7;26;-29}
Tìm GTNN của phân số ( n ϵ Z )
a) \(\dfrac{3}{n-2} \)
b) \(\dfrac{2n-5}{n+2}\)
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
a: ĐKXĐ: n<>1
Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1
=>2n-2+1⋮n-1
=>1⋮n-1
=>n-1∈{1;-1}
=>n∈{2;0}
b: ĐKXĐ: n<>-1
Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1
=>3n+3+2⋮n+1
=>2⋮n+1
=>n+1∈{1;-1;2;-2}
=>n∈{0;-2;1;-3}
c: ĐKXĐ: n<>-3
Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3
=>4n+12-14⋮n+3
=>-14⋮n+3
=>n+3∈{1;-1;2;-2;7;-7;14;-14}
=>n∈{-2;-4;-1;-5;4;-10;11;-17}
d: ĐKXĐ: n<>-4/3
Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4
=>6n+8-12⋮3n+4
=>-12⋮3n+4
=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}
=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }
mà n là số nguyên
nên n∈{-1;-2;0}
e: ĐKXĐ: n<>1/2
Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1
=>2n+6⋮2n-1
=>2n-1+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên
g: ĐKXĐ: n<>1/3
Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1
=>6n+9⋮3n-1
=>6n-2+11⋮3n-1
=>11⋮3n-1
=>3n-1∈{1;-1;11;-11}
=>3n∈{2;0;12;-10}
=>n∈{2/3;0;4;-10/3}
mà n nguyên
nên n∈{0;4}
Bài 1: CMR với n ϵ Z các phân số sau tối giản
a) \(\dfrac{n}{2n+1}\)
b) \(\dfrac{n+5}{n+6}\)
c) \(\dfrac{n+1}{2n+3}\)
d) \(\dfrac{3n+2}{5n+3}\)
e)\(\dfrac{1}{7n+1}\)
Các bạn giải chi tiết cho mình nhé. Thanks all !
a: Gọi d=ƯCLN(n;2n+1)
=>n⋮d và 2n+1⋮d
=>2n⋮d và 2n+1⋮d
=>2n+1-2n⋮d
=>1⋮d
=>d=1
=>ƯCLN(n;2n+1)=1
=>\(\frac{n}{2n+1}\) là phân số tối giản
b: Gọi d=ƯCLN(n+5;n+6)
=>n+5⋮d và n+6⋮d
=>n+6-n-5⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+5;n+6)=1
=>\(\frac{n+5}{n+6}\) là phân số tối giản
c: Gọi d=ƯCLN(n+1;2n+3)
=>n+1⋮d và 2n+3⋮d
=>2n+2⋮d và 2n+3⋮d
=>2n+3-2n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+1;2n+3)=1
=>\(\frac{n+1}{2n+3}\) là phân số tối giản
d: Gọi d=ƯCLN(3n+2;5n+3)
=>3n+2⋮d và 5n+3⋮d
=>15n+10⋮d và 15n+9⋮d
=>15n+10-15n-9⋮d
=>1⋮d
=>d=1
=>ƯCLN(3n+2;5n+3)=1
=>\(\frac{3n+2}{5n+3}\) là phân số tối giản
Cho A = \(^{\dfrac{n+3}{n-2}}\) (n ϵ Z;n≠2). Tìm n để A ϵ Z.
`A = (n+3)/(n-2)`
Ta có:
`(n+3)/(n-2)`
`=> (n+3)/(n+3-5)`
`=> -5 : n+3` hay `n+3 in Ư(-5)`
Biết: `Ư(-5)={-1;1;-5;5}`
`=> n in{-3;1;3;7}`
Ta có:
n + 3 = n - 2 + 5
Để A ∈ Z thì n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-3; 1; 3; 7}
So sánh các phân số bằng cách chọn phân số chung gian:
a, \(\dfrac{11}{49}\) và \(\dfrac{13}{46}\)
b, \(\dfrac{62}{85}\) và \(\dfrac{73}{80}\)
c, \(\dfrac{n}{n+3}\) và \(\dfrac{n+1}{n+2}\) ( n ϵ N* )
\(a,\dfrac{11}{49}< \dfrac{11}{46};\dfrac{11}{46}< \dfrac{13}{46}\\ Nên:\dfrac{11}{49}< \dfrac{13}{46}\\ b,\dfrac{62}{85}< \dfrac{62}{80};\dfrac{62}{80}< \dfrac{73}{80}\\ Nên:\dfrac{62}{85}< \dfrac{73}{80}\\ c,\dfrac{n}{n+3}< \dfrac{n}{n+2};\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\\ Nên:\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)
Mn ghi đáp án và cách giải giúp em nha!
Câu hỏi: Cho phân số A = \(\dfrac{n+1}{n-3}\)(n ϵ Z)
a, Tìm n để A là phân số
b, Tìm n để A là phân số tối giản
c, Tìm n để A có giá trị lớn nhất
Mong mn giúp em nha!!!
a: Để A là phân số thì n-3<>0
=>n<>3
c: \(A=\frac{n+1}{n-3}\)
\(=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A có giá trị lớn nhất thì \(1+\frac{4}{n-3}\) lớn nhất
=>\(\frac{4}{n-3}\) lớn nhất
=>n-3=1
=>n=4
Cho phân số P=\(\dfrac{n-2}{n+5}\), n ϵ Z, n ≠ -5
a) Tìm n để P có giá trị là 1 số nguyên.
b) Tìm n để phân số P rút gọn được.
Lời giải:
a. $P=\frac{n-2}{n+5}=1-\frac{7}{n+5}$
Để $P$ nguyên thì $\frac{7}{n+5}$ nguyên.
$\Rightarrow n+5$ là ước của $7$
$\Rightarrow n+5\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{-4; -6; 2; -12\right\}$
b.
Để phân số $P$ rút gọn được thì $n-2, n+5$ không nguyên tố cùng nhau.
Gọi $ƯCLN(n-2, n+5)=d$ thì $n-2\vdots d; n+5\vdots d$
$\Rightarrow 7\vdots d$
Để $n-2, n+5$ không nguyên tố cùng nhau thì $d=7$
$\Rightarrow n-2\vdots 7$
$\Rightarrow n-2=7k$ với $k$ nguyên
$\Rightarrow n=7k+2$ với $k$ là số nguyên bất kỳ.