Tìm GTNN của phân số ( n ϵ Z )
a) \(\dfrac{3}{n-2} \)
b) \(\dfrac{2n-5}{n+2}\)
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
a: Để A là phân số thì 2n+3<>0
=>2n<>-3
=>\(n<>-\frac32\)
b: Để A là số nguyên thì 19n+1⋮2n+3
=>38n+2⋮2n+3
=>38n+57-55⋮2n+3
=>-55⋮2n+3
=>2n+3∈{1;-1;5;-5;11;-11;55;-55}
=>2n∈{-2;-4;2;-8;8;-14;52;-58}
=>n∈{-1;-2;1;-4;4;-7;26;-29}
Bài 1: CMR với n ϵ Z các phân số sau tối giản
a) \(\dfrac{n}{2n+1}\)
b) \(\dfrac{n+5}{n+6}\)
c) \(\dfrac{n+1}{2n+3}\)
d) \(\dfrac{3n+2}{5n+3}\)
e)\(\dfrac{1}{7n+1}\)
Các bạn giải chi tiết cho mình nhé. Thanks all !
a: Gọi d=ƯCLN(n;2n+1)
=>n⋮d và 2n+1⋮d
=>2n⋮d và 2n+1⋮d
=>2n+1-2n⋮d
=>1⋮d
=>d=1
=>ƯCLN(n;2n+1)=1
=>\(\frac{n}{2n+1}\) là phân số tối giản
b: Gọi d=ƯCLN(n+5;n+6)
=>n+5⋮d và n+6⋮d
=>n+6-n-5⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+5;n+6)=1
=>\(\frac{n+5}{n+6}\) là phân số tối giản
c: Gọi d=ƯCLN(n+1;2n+3)
=>n+1⋮d và 2n+3⋮d
=>2n+2⋮d và 2n+3⋮d
=>2n+3-2n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+1;2n+3)=1
=>\(\frac{n+1}{2n+3}\) là phân số tối giản
d: Gọi d=ƯCLN(3n+2;5n+3)
=>3n+2⋮d và 5n+3⋮d
=>15n+10⋮d và 15n+9⋮d
=>15n+10-15n-9⋮d
=>1⋮d
=>d=1
=>ƯCLN(3n+2;5n+3)=1
=>\(\frac{3n+2}{5n+3}\) là phân số tối giản
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
a: ĐKXĐ: n<>1
Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1
=>2n-2+1⋮n-1
=>1⋮n-1
=>n-1∈{1;-1}
=>n∈{2;0}
b: ĐKXĐ: n<>-1
Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1
=>3n+3+2⋮n+1
=>2⋮n+1
=>n+1∈{1;-1;2;-2}
=>n∈{0;-2;1;-3}
c: ĐKXĐ: n<>-3
Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3
=>4n+12-14⋮n+3
=>-14⋮n+3
=>n+3∈{1;-1;2;-2;7;-7;14;-14}
=>n∈{-2;-4;-1;-5;4;-10;11;-17}
d: ĐKXĐ: n<>-4/3
Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4
=>6n+8-12⋮3n+4
=>-12⋮3n+4
=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}
=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }
mà n là số nguyên
nên n∈{-1;-2;0}
e: ĐKXĐ: n<>1/2
Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1
=>2n+6⋮2n-1
=>2n-1+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên
g: ĐKXĐ: n<>1/3
Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1
=>6n+9⋮3n-1
=>6n-2+11⋮3n-1
=>11⋮3n-1
=>3n-1∈{1;-1;11;-11}
=>3n∈{2;0;12;-10}
=>n∈{2/3;0;4;-10/3}
mà n nguyên
nên n∈{0;4}
Tìm n ϵ Z, để các phân số sau có giá trị là số tự nhiên
a) \(\dfrac{n+2}{3}\) b) \(\dfrac{7}{n-1}\) c) \(\dfrac{n+1}{n-1}\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Tìm GTNN của phân số ( n ϵ Z )
a) \(\dfrac{3}{n-2}\)
b)\(\dfrac{1-n}{4-n}\)
câu 1 : tìm a,b ϵ Z biết : \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{5}\) và a - b + 2c = 77
câu 2 : (x\(^n\))\(^m\) = ?
Câu 1
Ta có: \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{2c}{10}\) và a-b+2c=77
\(\dfrac{a-b+2c}{3-2+10}=\dfrac{77}{11}=7\)
\(\dfrac{a}{3}=7\) ⇒ a=21
\(\dfrac{b}{2}=7\) ⇒ b=14
\(\dfrac{c}{5}=7\) ⇒ c=35
Tìm n ϵ N, B=\(\dfrac{5n-3}{2n-2}\) đạt GTLN, C=\(\dfrac{7n-8}{2n-3}\) đạt GTLN
Cho A = \(^{\dfrac{n+3}{n-2}}\) (n ϵ Z;n≠2). Tìm n để A ϵ Z.
`A = (n+3)/(n-2)`
Ta có:
`(n+3)/(n-2)`
`=> (n+3)/(n+3-5)`
`=> -5 : n+3` hay `n+3 in Ư(-5)`
Biết: `Ư(-5)={-1;1;-5;5}`
`=> n in{-3;1;3;7}`
Ta có:
n + 3 = n - 2 + 5
Để A ∈ Z thì n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-3; 1; 3; 7}
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi![]()
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0