Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Tú
Xem chi tiết
Ngu Ngu Ngu
12 tháng 5 2017 lúc 10:42

Giải:

Nhân cả 2 vế của phương trình với \(2.3.4\) ta được:

\(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.2.3.4\)

\(\Rightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\)

\(VT\) là 4 số nguyên liên tiếp khác 0 nên các thừa số phải cùng dấu \(\left(+\right)\) hoặc \(\left(-\right)\)

Suy ra: \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\left(1\right)\)

Và \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.\left(-10\right).\left(-9\right).\left(-8\right)\left(2\right)\)

Từ \(PT\left(1\right)\Leftrightarrow12x-1=11\Leftrightarrow x=1\left(TM\right)\)

Từ \(PT\left(2\right)\Leftrightarrow12x-1=-8\Leftrightarrow x=\frac{-7}{12}\left(L\right)\)

Vậy \(x=1\) thỏa mãn phương trình

Mai Linh
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
15 tháng 5 2019 lúc 20:05

<=> (12x - 1)2(6x - 1)3(4x - 1)4(3x - 1) = 330.24
<=> (12x - 1)(12x - 2)(12x - 3)(12x - 4) = 7920
<=> [ (12x - 1)(12x - 4)] [ (12x - 3)(12x - 2) ] - 7920 = 0
<=> (144x² - 60x + 4)(144x² - 60x + 6) - 7920 = 0
Đặt (144x² - 60x + 4) = t
=> t(t + 2) - 7920 = 0
=> t² + 2t - 7920 = 0
∆' = 1² + 7920 = 7921 => √∆' = 89
=> t1 = - 90 hay t2 = 88
Khi t = - 90
=> (144x² - 60x + 4) = -90
=> 144x² - 60x + 94 = 0
=> 72x² - 30x + 47 = 0
∆' = (-15)² - 47.72 = - 3159 => (loại)
Khi t = 88
=> (144x² - 60x + 4) = 88
=> 144x² - 60x - 84 = 0
=> 36x² - 15x + 21 = 0
∆ = (-15)² + 4.36.21 = 3249 => √∆ = 57
=> x = 1 hay x = -42/2.36 (loại vì x là số nguyên)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2017 lúc 5:25

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2024 lúc 20:26

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Nguyễn Việt Lâm
16 tháng 1 2024 lúc 20:28

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 2024 lúc 20:33

c.

\(2x+3\sqrt{x}+1=0\)

ĐKXĐ: \(x\ge0\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)

\(\Rightarrow2x+3\sqrt{x}+1>0\)

Pt đã cho vô nghiệm

d.

\(x^4+4x^2+1=3x^3+3x\)

\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)

\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

Đặt \(x+\dfrac{1}{x}=t\)

\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

Quan Nguyen
Xem chi tiết
Hacker lỏd
Xem chi tiết

Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)

=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)

\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)

\(=y^2+6y+9-88=\left(y+3\right)^2-88\)

Để phương trình có nghiệm nguyên thì Δ phải là số chính phương

=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)

=>\(\left(y+3\right)^2-k^2=88\)

=>(y+3-k)(y+3+k)=88

=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}

TH1: y+3-k=1 và y+3+k=88

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH2: y+3-k=88 và y+3+k=1

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH3: y+3-k=-1 và y+3+k=-88

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH4: y+3-k=-88 và y+3+k=-1

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH5: y+3-k=2 và y+3+k=44

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH6: y+3-k=44 và y+3+k=2

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH7: y+3-k=-2 và y+3+k=-44

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH8: y+3-k=-44 và y+3+k=-2

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH9: y+3-k=4 và y+3+k=22

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH10: y+3-k=22 và y+3+k=4

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH11: y+3-k=-4 và y+3+k=-22

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH12: y+3-k=-22 và y+3+k=-4

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH13: y+3-k=8 và y+3+k=11

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH14: y+3-k=11 và y+3+k=8

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH15: y+3-k=-8 và y+3+k=-11

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

TH16: y+3-k=-11 và y+3+k=-8

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

Quynh Bach Pham
Xem chi tiết
khôi lê nguyễn kim
Xem chi tiết
Thanh Tùng DZ
30 tháng 10 2019 lúc 19:38

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
30 tháng 10 2019 lúc 20:54

ai tích mình sai vậy ạ, xin lí do

Khách vãng lai đã xóa
Phùng Minh Quân
31 tháng 10 2019 lúc 5:03

làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Khách vãng lai đã xóa
Lê Bảo Châu
Xem chi tiết
Thành Dương
19 tháng 7 2021 lúc 20:47

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)