Tìm tất cả các số nguyên x thỏa mãn phương trình:
(12x-1)(6x-1)(4x-1)(3x-1)=330
tìm tất cả các số nguyên x thỏa mãn phương trình:
\(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
Giải:
Nhân cả 2 vế của phương trình với \(2.3.4\) ta được:
\(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.2.3.4\)
\(\Rightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\)
\(VT\) là 4 số nguyên liên tiếp khác 0 nên các thừa số phải cùng dấu \(\left(+\right)\) hoặc \(\left(-\right)\)
Suy ra: \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\left(1\right)\)
Và \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.\left(-10\right).\left(-9\right).\left(-8\right)\left(2\right)\)
Từ \(PT\left(1\right)\Leftrightarrow12x-1=11\Leftrightarrow x=1\left(TM\right)\)
Từ \(PT\left(2\right)\Leftrightarrow12x-1=-8\Leftrightarrow x=\frac{-7}{12}\left(L\right)\)
Vậy \(x=1\) thỏa mãn phương trình
Tìm tất cả các số nguyên x thỏa mãn phương trình:
( 12x - 1 ) ( 6x - 1 ) ( 4x - 1 ) ( 3x - 1 ) = 330
<=> (12x - 1)2(6x - 1)3(4x - 1)4(3x - 1) = 330.24
<=> (12x - 1)(12x - 2)(12x - 3)(12x - 4) = 7920
<=> [ (12x - 1)(12x - 4)] [ (12x - 3)(12x - 2) ] - 7920 = 0
<=> (144x² - 60x + 4)(144x² - 60x + 6) - 7920 = 0
Đặt (144x² - 60x + 4) = t
=> t(t + 2) - 7920 = 0
=> t² + 2t - 7920 = 0
∆' = 1² + 7920 = 7921 => √∆' = 89
=> t1 = - 90 hay t2 = 88
Khi t = - 90
=> (144x² - 60x + 4) = -90
=> 144x² - 60x + 94 = 0
=> 72x² - 30x + 47 = 0
∆' = (-15)² - 47.72 = - 3159 => (loại)
Khi t = 88
=> (144x² - 60x + 4) = 88
=> 144x² - 60x - 84 = 0
=> 36x² - 15x + 21 = 0
∆ = (-15)² + 4.36.21 = 3249 => √∆ = 57
=> x = 1 hay x = -42/2.36 (loại vì x là số nguyên)
Tìm tập hợp tất cả các giá trị của tham số m để bất phương trình 12 x + ( 2 - m ) 6 x + 3 x > 0 thỏa mãn với mọi x dương.
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
c.
\(2x+3\sqrt{x}+1=0\)
ĐKXĐ: \(x\ge0\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)
\(\Rightarrow2x+3\sqrt{x}+1>0\)
Pt đã cho vô nghiệm
d.
\(x^4+4x^2+1=3x^3+3x\)
\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)
\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
Đặt \(x+\dfrac{1}{x}=t\)
\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
Bài 1 Cho tam giác ABC có AM là trung truyến các đường phân giác của góc BMA và góc CMA cắt AB,AC tương ứng tại D và E
a) CMR DE //BC
b) Gọi O là giao điểm của AM và DE.Chứng minh. OD = OE
Bài 2 Tìm tất cả các cặp số nguyên thỏa mãn pt:
(12x-1)(6x-1)(4x-1)(3x-1)= 330
Mn giải hộ mk vs ☺
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Tìm tất cả các cặp số nguyên không âm (x, y) thỏa mãn phương trình :
\(1+3^{x+1}+2.3^{3x}=y^3\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn phương trình: \(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
ai tích mình sai vậy ạ, xin lí do
làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)