Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)
=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)
\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)
\(=y^2+6y+9-88=\left(y+3\right)^2-88\)
Để phương trình có nghiệm nguyên thì Δ phải là số chính phương
=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)
=>\(\left(y+3\right)^2-k^2=88\)
=>(y+3-k)(y+3+k)=88
=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}
TH1: y+3-k=1 và y+3+k=88
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH2: y+3-k=88 và y+3+k=1
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH3: y+3-k=-1 và y+3+k=-88
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH4: y+3-k=-88 và y+3+k=-1
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH5: y+3-k=2 và y+3+k=44
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH6: y+3-k=44 và y+3+k=2
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH7: y+3-k=-2 và y+3+k=-44
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH8: y+3-k=-44 và y+3+k=-2
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH9: y+3-k=4 và y+3+k=22
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH10: y+3-k=22 và y+3+k=4
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH11: y+3-k=-4 và y+3+k=-22
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH12: y+3-k=-22 và y+3+k=-4
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH13: y+3-k=8 và y+3+k=11
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH14: y+3-k=11 và y+3+k=8
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH15: y+3-k=-8 và y+3+k=-11
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
TH16: y+3-k=-11 và y+3+k=-8
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)