Cho ( P) : y= \(\dfrac{-x^2}{2}\) và (d) có hệ số góc k , (d) đi qua điểm (0; -2 )
a) Viết phương trình đường thẳng (d)
b) Chứng minh rằng khi k thay đổi , (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Cho hàm số y=\(\dfrac{2x+4}{1-x}\) có đồ thị (C).G đường đi qua gọi d là đường đi qua A(1;1) và có hệ số góc k. Tìm ksao cho d caứt (C) tại 2 điểm M,N sao cho MN= \(3\sqrt{10}\)
Phương trình d: \(y=k\left(x-1\right)+1=kx-k+1\)
Phương trình hoành độ giao điểm (C) và (d):
\(\dfrac{2x+4}{1-x}=kx-k+1\)
\(\Leftrightarrow kx^2-\left(2k-3\right)x+k+3=0\)
\(\Delta=\left(2k-3\right)^2-4k\left(k+3\right)=-24k+9\ge0\Rightarrow k\le\dfrac{3}{8}\)
\(\left\{{}\begin{matrix}x_M+x_N=\dfrac{2k-3}{k}\\x_M.x_N=\dfrac{k+3}{k}\end{matrix}\right.\)
\(MN^2=\left(x_M-x_N\right)^2+\left(y_M-y_M\right)^2=90\)
\(\Leftrightarrow\left(k^2+1\right)\left(x_M-x_N\right)^2=90\)
\(\Leftrightarrow\left(k^2+1\right)\left[\left(x_M+x_N\right)^2-4x_Mx_N\right]=90\)
\(\Leftrightarrow\left(k^2+1\right)\left[\dfrac{\left(2k-3\right)^2}{k^2}-\dfrac{4\left(k+3\right)}{k}\right]=90\)
\(\Leftrightarrow\left(k^2+1\right)\left(3-8k\right)=30k^2\)
\(\Leftrightarrow8k^3+27k^2+8k-3=0\)
\(\Leftrightarrow\left(k+3\right)\left(8k^2+3k-1\right)=0\)
\(\Leftrightarrow...\)
Cho cos x + sin x =\(\dfrac{3}{4}\) . Tính giá trị biểu thức A = \(\left|sinx-cosx\right|\)
Cho parabol (P): y= -x2 và đường thẳng d đi qua điểm I(0; -1) có hệ số góc k. Viết phương trình đường thẳng (d).
Mục tiêu -500 sp mong giúp đỡ haha
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
cho P: y=-1/2 x2 và d là đt đi qua M(0;-2) và có hệ số góc k
a) viết pt đt d
b) cm d luôn cắt P tại 2 điểm pb với mọi k
Trong mặt phẳng Oxy, cho parabol P : y = -x 2 và đường thẳng d đi qua điểm M 0;-1 có hệ số góc k. c Viết phương trình đường thẳng d . Chứng minh rằng với mọi giá trị của ,k d luôn cắt P tại hai điểm phân biệt A,B. giúp mình nha
Câu 3:
Cho hàm số y = x^2 có đồ thị (P) và đường thẳng (d) đi qua điểm M (1;2) có hệ số góc k ≠ 0.
Chứng minh rằng với mọi giá trị k khác 0. đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B.
cho parabol (P) : y= -x2 -1 và đường thẳng (d) đi qua điểm I (0;-2) và có hệ số góc k
a) tìm k để (d) cắt (P) tại 2 điểm phân biệt
b) gọi A,B là các giao điểm của (d) và (p) và có hoành độ lầ lượt là x1,x2 , tìm k để trung điểm của đoạn thẳng AB nằm trên trục tung
Cho hàm số y= -x2 có đồ thị (P) và đường thẳng (d) có hệ số góc k≠0 đi qua điểm I (0;-1).Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A và B
Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )
Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1
=> y=kx-1(d)
Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:
-x^2=kx-1
<=> x^2-kx-1=0 (1)
Xét phương trình có a=1;c=-1 => ac=-1 <0
=> (1) luôn có 2 nghiệm phân biệt
=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Cho Parabol (p):y=\(\dfrac{x^2}{4}\)
và đường thẳng d có hệ góc k, đi qua điểm
M (0;2) .
a) Viết phương trình đường thẳng AB.
a) Chứng minh khi k thay đổi, d luôn cắt (P) tại hai điểm A, B phân biệt.
b) Tìm k để độ dài đoạn AB ngắn nhất.
Cho hàm số y= -x2 có đồ thị (P). Gọi (d) là đường thẳng đi qua điểm M(0;1) và có hệ số góc k. Tìm điều kiện của k để đường thẳng d cắt đồ thị (P) tại 2 điểm phân biệt