Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Cẩm Ly
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
25 tháng 3 2018 lúc 16:02

Hỏi đáp Toán

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
21 tháng 3 2018 lúc 15:44

Tìm GTNN nha.

mk nhầm

Mashiro Shiina giúp mk vs

Annie Scarlet
21 tháng 3 2018 lúc 21:46

@ Mashiro Shiina

Này luôn đi!

 Mashiro Shiina
21 tháng 3 2018 lúc 21:49

khác éo j bài trc,động não hộ cái

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Ngọc Phan
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 7:50

Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$

$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$

$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$

Akai Haruma
30 tháng 4 2023 lúc 7:51

Bài 2:

$18: \frac{x\times 0,4+0,32}{x}+5=14$

$18: \frac{x\times 0,4+0,32}{x}=14-5=9$

$\frac{x\times 0,4+0,32}{x}=18:9=2$

$x\times 0,4+0,32=2\times x$

$2\times x-x\times 0,4=0,32$

$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$

Akai Haruma
30 tháng 4 2023 lúc 7:53

Bài 3:

$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$

$1,5\times x=x+\frac{11}{15}$

$1,5\times x-x=\frac{11}{15}$

$x\times (1,5-1)=\frac{11}{15}$

$x\times 0,5=\frac{11}{15}$

$x=\frac{11}{15}: 0,5=\frac{22}{15}$

Công chúa thủy tề
Xem chi tiết
nguyễn hải yến
14 tháng 11 2017 lúc 21:26

^13 hay ^14 zậy bạn

nguyễn hải yến
15 tháng 11 2017 lúc 0:32

\(\left(\frac{-1}{25}\right)^{14}:\left(2x-1\right)^2=\left(\frac{1}{5}\right)^{26}\)

=> (2x-1)2 = \(\left(\frac{-1}{25}\right)^{14}:\left(\frac{1}{5}\right)^{26}\)

=> ( 2x - 1 )2 = \(\left(\frac{-1}{25}\right)^{14}:\left(\frac{1}{25}\right)^{13}\)

=> ( 2x - 1 )2 = \(\left[\left(\frac{-1}{25}\right)^{13}.\left(\frac{-1}{25}\right)\right]:\left(\frac{1}{25}\right)^{13}\)

=> ( 2x - 1 )2 = \(\frac{1}{25}\)

=> ( 2x - 1 )^2 = \(\left(\frac{1}{5}\right)^2\)

=> \(\hept{\begin{cases}2x-1=\frac{1}{5}\\2x-1=\frac{-1}{5}\end{cases}}\)

=> \(\hept{\begin{cases}2x=\frac{1}{5}+1\\2x=\frac{-1}{5}+1\end{cases}}\)

=> \(\hept{\begin{cases}x=\frac{3}{5}\\x=\frac{2}{5}\end{cases}}\)

Vậy x = 3/5 hay x = 2/5

Vu Thi Hong Nhung
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2022 lúc 22:34

Bài 2: 

x=13 nên x+1=14

\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)

\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)

=14-x=1

44-Thế toàn-6k2
24 tháng 2 2022 lúc 22:38

x=13 nên x+1=14

f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14

=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14

=14-x=1

  
ღ Rain...
Xem chi tiết
Nguyễn Quang Thắng
27 tháng 3 2018 lúc 14:15

Ta có : \(5\left|6y-8\right|\ge0\)

\(\Rightarrow5\left|6y-8\right|+35\ge35\\ \Rightarrow\dfrac{14}{5\left|6y-8\right|+35}\le\dfrac{14}{35}\\ \Rightarrow\dfrac{6}{5}-\dfrac{14}{5\left|6y-8\right|+35}\ge\dfrac{28}{35}\)

Min P = \(\dfrac{28}{35}\)khi y= \(\dfrac{4}{3}\)

Nham Nguyen
Xem chi tiết
gãi hộ cái đít
20 tháng 2 2021 lúc 17:28

Ta có: \(\left(x+y-2\right)^2+7\ge7\Rightarrow\dfrac{14}{\left|y-1\right|+\left|y-3\right|}\ge7\)

\(\Rightarrow\left|y-1\right|+\left|y-3\right|\le2\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|y-1\right|=0\\\left|y-3\right|=2\end{matrix}\right.\\\left\{{}\begin{matrix}\left|y-1\right|=2\\\left|y-3\right|=0\end{matrix}\right.\\\left|y-1\right|=\left|y-3\right|=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\y=3\\y=2\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)