Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Ngọc
Xem chi tiết
Girl
13 tháng 3 2018 lúc 18:03

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

Tề Mặc
14 tháng 3 2018 lúc 18:00

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

tth_new
29 tháng 12 2018 lúc 8:11

\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)

A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.

Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))

Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)

NGUYỄN CẨM TÚ
Xem chi tiết
Nguyễn Huy Tú
6 tháng 6 2017 lúc 10:00

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)

Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất

Ta có: \(\left|x-2016\right|\ge0\)

\(\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)

Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)

Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016

Kirigawa Kazuto
6 tháng 6 2017 lúc 9:57

Ta có :

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)

\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)

<=> |x - 2016| = 0

<=> x = 2016

dream XD
Xem chi tiết
Nguyễn Ngọc Lộc
3 tháng 7 2021 lúc 9:25

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

Ekachido Rika
Xem chi tiết
Phước Lộc
6 tháng 3 2020 lúc 20:57

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

Khách vãng lai đã xóa
Hằng😁😁😁😁
6 tháng 3 2020 lúc 20:57

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 3 2020 lúc 20:58

Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Ta có : \(\left|x-2017\right|\ge0\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)

Hay : \(A\ge\frac{2018}{2019}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Tân Vương
11 tháng 3 2022 lúc 20:02

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

Trần Thị Hảo
Xem chi tiết
Nguyễn Việt Anh
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Khách vãng lai đã xóa
Nguyễn Quang Hoàng
Xem chi tiết
Nguyễn Xuân Toàn
7 tháng 11 2017 lúc 12:42

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy !!!

Le THuy Hien
1 tháng 5 2018 lúc 9:46

bạn đang đưa linh tinh đó thôi

amano ichigo
Xem chi tiết
Nguyễn Thanh Hằng
23 tháng 10 2018 lúc 21:46

Để \(A=\dfrac{2018}{2019-\left|x-2017\right|}\) đạt GTNN

thì \(2019-\left|x-2017\right|\) đạt GTLN

Ta có :

\(\left|x-2017\right|\ge0\)

\(\Leftrightarrow-\left|x-2017\right|\le0\)

\(\Leftrightarrow2019-\left|x-2017\right|\le2019\)

Dấu "=" xảy ra khi : \(\left|x-2017\right|=0\Leftrightarrow x=2017\)

Khi đó : \(A=\dfrac{2018}{2019-\left|2017-2017\right|}=\dfrac{2018}{2019}\)

Vậy \(A_{Min}=\dfrac{2018}{2019}\Leftrightarrow x=2017\)

Vũ Trung Hiếu
Xem chi tiết
Vũ Hoàng Trung
27 tháng 2 2020 lúc 15:15

Sao chép

Khách vãng lai đã xóa