Cho tập hợp \(P=\left\{1;\frac{1}{2};\frac{1}{3};\frac{1}{4};\frac{1}{5}\right\}\)Hãy mô tả tập hợp \(P\)bằng cách nêu dấu hiệu đặc trưng của các phẩn tử của nó.
1, Cho tập hợp sau :
\(A=\left\{x\in N\left|x\le7\right|\right\}\)
Hỏi : A có bao nhiêu phần tử, đó là các phần tử nào và nêu 3 số \(\notin\)A
2, Cho tập hợp B
\(B=\left\{x\in N\left|1< x< 5\right|\right\}\)
Hãy viết ra các tập hợp là tập hợp con của tập hợp B mà mỗi tập hợp có 3 phần tử
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
Cho tập hợp : \(A=\left\{1,a,b,2\right\}\). Hãy viết các tập hợp con của tập hợp trên.
\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)
Các tập hợp con của A là:
{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}
Bài 1. (1 điểm)
a) Cho hai tập hợp $A=\left( -\infty ;3 \right)$ và $B=\left[ -2;15 \right)$. Tìm $A\cup B$; $A\cap B$.
b) Cho hai tập hợp số $A=\left( m-1;m+4 \right]$ và $B=\left( -2;3 \right]$ với $m$ thuộc $\mathbb{R}$. Xác định $m$ để $A \subset B$.
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
Cho tập X. Tập lũy thừa của X, kí hiệu \(P\left(X\right)\) là tập hợp tất cả các tập con của X kể cả chính tập X và tập rỗng. (Ví dụ nếu tập \(X=\left\{1;2;3\right\}\) thì tập \(P\left(X\right)=\left\{\varnothing;\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{2;3\right\};\left\{1;3\right\};X\right\}\))
Chứng minh rằng nếu \(\left|X\right|=n\) thì \(\left|P\left(X\right)\right|=2^n\) với mọi \(n\inℕ\)
(Kí hiệu \(\left|X\right|\) là số phần tử của tập X)
cho tập hợp X = \(\left\{k^2+1,k\in Z,\left|k\right|\le2\right\}\). Xác định số phần tử của tập hợp X
\(\left\{{}\begin{matrix}k\in Z\\\left|k\right|\le2\end{matrix}\right.\) \(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow X=\left\{1;2;5\right\}\)
\(\Rightarrow X\) có 3 phần tử
1/cho tập hợp B= \(\left\{x\in R|\left(9-x^2\right)\left(x^2-3x+2\right)=0\right\}\)tìm các phần tử
2/ tập hợp A= \(\left\{1;2;3;4;5;6\right\}\) có bao nhiêu tập hợp con gồm 2 phần tử ?
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
Cho tập hợp A = \(\left\{x\in Q:\left(2x^2-x\right)\left(x^3-2x+1\right)=0\right\}\)
Hãy liệt kê tất cả các phần tử của tập hợp A, chỉ ra các tập hợp con gồm 2 phần tử của A
A={0;1/2}
Tập con có hai phần tử của A là {0;1/2}
1. Cho tập hợp M có 4 tập hợp con có 1 phần tử.
Hỏi M có bao nhiêu tập hợp con cố 3 phần tử.
2. Cho \(A=\left\{a,b,c,d,e\right\}\)
Hỏi A có bao nhiêu tập hợp con.
Gọi 4 tập con của M là : a , b, c, d
M có các tập con có 3 phần tử là :
{ a , b ,c }
{ a , b , d }
{ a , c , d }
{ b ,c ,d }
- Chúc bạn học tốt
1 ___ M có 4 tập hợp nha bạn
2 A có 20 tập hợp con nha bạn
Cho S là tập hợp tất cả caccs giá trị nguyên của tham ssos m sao cho bất phương trình \(\dfrac{(m+1)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(2m+1\right)x+m}\le1\) có tập nghiệm là R . Tính số phần tử của tập hợp S
Cho S là tập hợp tất cả các giá trị nguyên của tham số m sao cho bất phương trình: \(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}\le1\) có tập nghiệm là R. Tìm số phần tử của tập hợp S
\(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}-1\le0\)
\(\Leftrightarrow\frac{x^2+2mx+3m+4}{mx^2+2\left(m+1\right)x+m}\le0\)
Để tập nghiệm của BPT đã cho là R
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2mx+3m+4\ge0\\mx^2+2\left(m+1\right)x+m< 0\end{matrix}\right.\) \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=m^2-3m-4\le0\\m< 0\\\Delta'_2=\left(m+1\right)^2-m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le m\le4\\m< 0\\2m+1< 0\end{matrix}\right.\) \(\Rightarrow-1\le m< -\frac{1}{2}\)