Giải phương trình: \(\dfrac{x^2-10x+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)
Giải phương trình
\(\frac{x^2-10x+15}{x^2-6x+15}=\frac{4x}{x^2-12x+15}\)
Đkxđ: ...
Đặt x2+ 15=a (a>0)
Pt ban đầu trở thành:
(a-10x)/(a-6x)=4x/(a-12x)
<=>a2-26ax+144x2=0
<=>(a-12x)(a-10x)=0
Xét th:a=10x
pt có nghiệm \(X=5\pm\sqrt{10}\)
Xét th:a=12x
Pt có nghiệm \(X=6\pm\sqrt{21}\)
làm như thế này nha:blablablablablablablabla hiểu hơm
\(\dfrac{x+1}{x^2+2x}+\dfrac{x+6}{x^2+12x+35}=\dfrac{x+2}{x^2+4x+3}-\dfrac{x+15}{x^2+10x+24}\)
\(\Leftrightarrow\dfrac{x+1}{\left(x+1\right)^2-1}+\dfrac{x+6}{\left(x+6\right)^2-1}=\dfrac{x+2}{\left(x+2\right)^2-1}=\dfrac{x+5}{\left(x+5\right)^2-1}\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)^2-x-1+\left(x+6\right)\left(x+1\right)^2-x-6=\left(x+2\right)\left(x+5\right)^2-x-2+\left(x+5\right)\left(x+2\right)^2-x-5\)
=>(x+1)(x+6)^2+(x+6)(x+1)^2=(x+2)(x+5)^2+(x+2)^2(x+5)
=>(x+1)(x+6)(x+6+x+1)=(x+2)(x+5)(x+5+x+2)
=>(2x+7)[x^2+7x+6-x^2-7x-10]=0
=>(2x+7)=0
=>x=-7/2
giải phương trình :
a, \(\dfrac{4x-1}{\sqrt{4x-3}}+\dfrac{11-2x}{\sqrt{5-x}}=\dfrac{15}{2}\)
b, \(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(3x-1-\sqrt{5x^2-6x+1}\right)=4x\)
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số :
\(\dfrac{4x-1}{3}\)-\(\dfrac{2-x}{15}\)≤\(\dfrac{10x-3}{5}\)
giải chi tiết giúp mik vs ah
=>5(4x-1)-2+x<=3(10x-3)
=>20x-5+x-2<=30x-9
=>21x-7<=30x-9
=>-9x<=-2
=>x>=2/9
Giải phương trình sau: \(\dfrac{4x^2+15}{x^2+8}-\dfrac{13}{x^2+4}=\dfrac{11}{x^2+2}+\dfrac{15}{x^2+6}\)
mình đang cần gấp ạ ;-;
Giải phương trình: \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)
=>2(x+1)(x+9)=5*8=40
=>x^2+9x+9=20
=>x^2+9x-11=0
hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)
=>x^2+9x
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
Giải phương trình :
a,\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
b,\(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)
c, \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)
\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)
\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)
b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2=6x^2+6x+6\)
\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
Vì \(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)
\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)
Giải các phương trình sau:
a) \(15 - 4x = x - 5\); b) \(\dfrac{{5x + 2}}{4} + \dfrac{{3x - 2}}{3} = \dfrac{3}{2}\).
a) \(15 - 4x = x - 5\)
\( - 4x - x = - 5 - 15\) (chuyển vế)
\( - 5x = - 20\)
\(x = \left( { - 20} \right):\left( { - 5} \right)\) (chia cho một số)
\(x = 4\)
Vậy phương trình có nghiệm \(x = 4\).
b) \(\dfrac{{5x + 2}}{4} + \dfrac{{3x - 2}}{3} = \dfrac{3}{2}\)
\(\dfrac{{\left( {5x + 2} \right).3}}{{4.3}} + \dfrac{{\left( {3x - 2} \right).4}}{{3.4}} = \dfrac{{3.6}}{{2.6}}\) (quy đồng mẫu số)
\(\dfrac{{15x + 6}}{{12}} + \dfrac{{12x - 8}}{{12}} = \dfrac{{18}}{{12}}\)
\(15x + 6 + 12x - 8 = 18\) (chia cả hai vế cho một số)
\(15x + 12x = 18 - 6 + 8\) (chuyển vế)
\(27x = 20\) (rút gọn)
\(x = 20:27\) (chia cả hai vế co một số)
\(x = \dfrac{{20}}{{27}}\)
Vậy phương trình có nghiệm \(x = \dfrac{{20}}{{27}}\).