Cho tam giác ABC cân tại A.Trên cạnh BC lần lượt lấy các điểm M,N sao cho BM=MN=NC.CMR:
a,AM<AB
b,góc BAM<MAN
Help me.......
Cho tam giác ABC cân tại A.Trên cạnh BC lần lượt lấy 2 điểm M và N sao cho BM=MN=CN. Gọi H là trung điểm của BC.
a, Tính độ dài đoạn thẳng AM khi AB=5 cm, BC=6 cm
b, Chung minh goc MAN>goc BAM
cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M. Trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.CMR:a, BM=CN b,BC cắt MN tại trung điểm của MN
Cho tam giác ABC cân tại A. Trên cạnh BC lần lượt lấy các điểm M, N sao cho BM=MN=MC
C/M: góc BAM= góc MAN
bạn tự vẽ hình ạ
Xét tam giác BAM và tam giác MAN có:
BM=NM
góc BAM=góc NAm
AM:chung
suy ra:2 tam giác bằng nhau(C.G.C)
Suy ra góc BAM=gócMAN
Nhớ vote 5 sao nha
Xét tam giác ABM và tam giác ANC có:
AB= AC ( tam giác ABC cân tại A)
BN=NC(gt)
góc B = góc C
DO đó : tam giác ABM = tam giác ANC (cgc)
⇒ AB = AN ( 2 cạnh tương ứng)
Xét tam giác ABM và tam giác ANM có:
AB = AN( cmt)
AM : cạnh chung
BM = MC (gt)
do đó tam giác ABM= tam giác ANM(c.c.c)
=> góc BAM = góc NAM ( đpcm)
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
a) Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
b) Xét ΔAMN có AM=AN(gt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{ANM}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ANM}=\widehat{ABC}\)
mà \(\widehat{ANM}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABM=ΔACN(cmt)
nên \(\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{CBM}=\widehat{ABC}\)(tia BM nằm giữa hai tia BA,BC)
\(\widehat{ACN}+\widehat{BCN}=\widehat{ACB}\)(tia CN nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABM}=\widehat{ACN}\)(cmt)
nên \(\widehat{CBM}=\widehat{BCN}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M, N sao cho BM=MN=NC. lấy các điểm E, F lần lượt thuộc các cạnh AB, AC sao cho EM, FN vuông góc BC
a,CMR tam giác BEM vuông cân
b,CMR MNFE là hình vuông
a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)
nên ΔBEM vuông cân tại M
b: ME\(\perp\)BC
NF\(\perp\)BC
Do đó: ME//NF
Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)
nên ΔCNF vuông cân tại N
=>CN=NF
CN=NF
BM=ME
CN=NM=MB
Do đó: CN=NF=BM=ME=NM
Xét tứ giác NMEF có
NF//ME
NF=ME
Do đó: NMEF là hình bình hành
Hình bình hành NMEF có NM=NF
nên NMEF là hình thoi
Hình thoi NMEF có \(\widehat{FNM}=90^0\)
nên NMEF là hình vuông
Cho tam giác ABC cân tại A.Trên cạnh AB và AC lấy lần luợt các điểm M và N sao cho BM=CN.Gọi BN cát CM tại O.Chứng minh rằng:
a)Tam giác AMN cân và MN song song BC. b)\(\Delta BMO=\Delta CNO.\)
a, ta có BN VÀ CN THEO THỨ TỰ PHÂN GIÁC CỦA GÓC B VÀ GÓC C (GT)
NEN B1=B2=1/2B VÀ C1=C2=1/2 C MÀ GÓC B = GÓC C
(2 GÓC Ở ĐÁY CỦA TAM GIÁC CÂN ABC) =>GÓC B2 =GỐC C2
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO
GÓC A CHUNG (GT)
GÓC B2 = GÓC C2
CANH AB=AC(GT
VẬY TAM GIÁC ABE=TAM GIÁC ACE (GCG) =>AD=AE
=> TAM GIÁC AMN CÂN TẠI A
cho tgiac ABC cân tại A lấy điểm M,N lần lượt trên cạnh AB và AC sao cho AM=AN
a) chứng minh MN//BC
b)Chứng minh BM=CN
c) cminh Tam giác AMN = Tam giác CNM
a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
b: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
c: Đề sai rồi bạn
Cho tam giác ABC cân tại A. Trên cạnh AB,AC lần lượt lấy 2 điểm M,N sao cho BM=CN
a) chứng minh tam giác AMN là tam giác cân
b)chứng minh MN // BC
cho tam giác ABC cân tại A .Trên các cạnh AB,AC lần lượt lấy các điểm M và N sao cho BM=CN
â) chứng minh tam giác MAN cân
b) chứng minh BN=CM
c) chứng minh MN//BC