Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Minh Hiếu

. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.

a) Chứng minh tam giác ABM = tam giác ACN .

b) Chứng minh MN // BC.

c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.

Thanh Hoàng Thanh
16 tháng 1 2021 lúc 21:20

a) Xét tam giác ABM và  tam giác ACN:

Góc A chung

AB = AC (do tam giác ABC cân tại A)

AM = AN (gt)

Suy ra: tam giác ABM = tam giác ACN (c g c)

Thanh Hoàng Thanh
16 tháng 1 2021 lúc 21:27

b) Xét tam giác AMN có :

AM =AN (gt)

Suy ra:  tam giác AMN cân tại A

Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)

mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\)  ( do tam giác ABC cân tại A)

Suy ra: góc ANM = góc ABC

Mà 2 góc này ở vị trí đồng vị của MN và BC

Suy ra MN song song BC

Nguyễn Lê Phước Thịnh
16 tháng 1 2021 lúc 21:28

a) Xét ΔABM và ΔACN có

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

AM=AN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

b) Xét ΔAMN có AM=AN(gt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{ANM}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ANM}=\widehat{ABC}\)

mà \(\widehat{ANM}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: ΔABM=ΔACN(cmt)

nên \(\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng)

Ta có: \(\widehat{ABM}+\widehat{CBM}=\widehat{ABC}\)(tia BM nằm giữa hai tia BA,BC)

\(\widehat{ACN}+\widehat{BCN}=\widehat{ACB}\)(tia CN nằm giữa hai tia CA,CB)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)

và \(\widehat{ABM}=\widehat{ACN}\)(cmt)

nên \(\widehat{CBM}=\widehat{BCN}\)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)


Các câu hỏi tương tự
đinh thị ngọc lan
Xem chi tiết
Têrêsa Ly
Xem chi tiết
Thu Thảo
Xem chi tiết
Honekawa hanako
Xem chi tiết
❤️chiii❤️
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thân Bảo Khôi
Xem chi tiết
Đỗ Lan Phương
Xem chi tiết
dương vũ
Xem chi tiết