a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
a) Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
b) Xét ΔAMN có AM=AN(gt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{ANM}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ANM}=\widehat{ABC}\)
mà \(\widehat{ANM}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABM=ΔACN(cmt)
nên \(\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{CBM}=\widehat{ABC}\)(tia BM nằm giữa hai tia BA,BC)
\(\widehat{ACN}+\widehat{BCN}=\widehat{ACB}\)(tia CN nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABM}=\widehat{ACN}\)(cmt)
nên \(\widehat{CBM}=\widehat{BCN}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)