Cho a/2003=b/2004=c/2005
Chứng minh 4(a-b)(b-c)=(c-a)2
Cho a/2003=b/2004=c/2005. Chứng minh rằng 4(a-b)(b-c)=(a-c)^2
Cho a/2003=b/2004=c/2005. Chứng minh rằng 4(a-b).(b-c)=(c-a)2
Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
\(\Rightarrow a=2003k;b=2004k;c=2005k\)
Thay a = 2003k, b = 2004k, c = 2005k vào 4(a - b)(b - c), ta có:
4(2003k - 2004k)(2004k - 2005k)
= 4(-k)(-k)
= 4k2
Thay a = 2003k, b = 2004k, c = 2005k vào (c - a)2, ta có:
(2005k - 2003k)2 = (2k)2 = 4k2
Vì 4k2 = 4k2 nên 4(a - b)(b - c) = (c - a)2
Vậy với \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)thì \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
chứng minh nếu a+2003/a-2003=b-2004/b+2004 thì a/2003= b/2004
với a khác 2003 và b khác 2004
\(\dfrac{a+2003}{a-2003}=\dfrac{b-2004}{b+2004}\)
\(\Leftrightarrow\left(a+2003\right)\left(b+2004\right)=\left(a-2003\right)\left(b-2004\right)\)
\(\Leftrightarrow ab+2004a+2003a+2003\cdot2004=ab-2004a-2003a+2003\cdot2004\)
\(\Leftrightarrow4008a=4006b\)
=>a/b=2003/2004
hay a/2003=b/2004
cho a+b / 2002 + b+c/ 2003 + c+a / 2004
chung minh rang 4 . (a-c). (b-a)
cho a/2003 = b/2004 = c/2005 . CMR 4(a-b)(b-c)=(c-a)^2
Giải:
Đặt \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)
Ta có:
\(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4.\left(-k\right)\left(-k\right)\)
\(=4.k^2\) (1)
Lại có:
\(\left(c-a\right)^2\)
\(=\left(2005k-2003k\right)^2\)
\(=\left(2k\right)^2\)
\(=4k^2\) (2)
Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(a+b\right)=\left(c-a\right)^2\)
\(\Rightarrowđpcm\).
Chúc bạn học tốt!!!
Đặt:
\(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4.-k.-k=4k^2\)
\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=2k^2=4k^2\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
\(\rightarrowđpcm\)
Bài này mk làm rồi bạn, vào câu hỏi tương tự nhé!
Bài 4: Tìm a,b,c biết a+1/2 = b-1/3 = c+2/4 = a+b+c+2/2a+5
Bài 5: Cho a/2002 = b/2003 = c/2004 . Chứng minh rằng 4(a-b)(b-c) = (c-a)2
Để xem ai IQ 10 mik tik cho nhé !
Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)
\(\Rightarrow VT=VP\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)
=> 2a + 5 = 9
=> 2a = 4
=> a = 2
Thay a vào (1) ta có :
\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)
Vậy a = 2 ; b = 5,5 ; c = 4
5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
4(a - b)(b - c) = (c - a)2
=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2
=> 4(-k)(-k) = (-2k)2
=> (-2)2(-k)2 = (-2k)2
=> 22k2 = (2k)2
=> (2k)2 = (2k)2
=> 4(a - b)(b - c) = (c - a)2 (đpcm)
Bài 4:
\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+1+b-1+c+2}{2+3+4}=\frac{a+b+c+2}{9}\)
\(\Rightarrow2a+5=9\Rightarrow a=2\)
Lại có: \(\frac{a+1}{2}=\frac{3}{2}\)\(\Rightarrow\frac{b-1}{3}=\frac{3}{2}\Leftrightarrow2\left(b-1\right)=9\Leftrightarrow b=\frac{11}{2}\)
\(\frac{c+2}{4}=\frac{3}{2}\Leftrightarrow2\left(c+2\right)=12\Leftrightarrow c=4\)
Vậy ...
cho :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh rằng : 4 . ( a - b ) . ( b - c ) = ( c - a )2
dat \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
suy ra \(\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)
4.(a-b).(b-c)=4.(2003k-2004k).(2004k-2005k)=4k^2
(c-a)^2=(2005k-2003k)^2=4k^2
xong roi do cho minh dung nhe!
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}\)
Thay vào \(4\left(a-b\right)\left(b-c\right)\), ta được :
\(4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( điều phải chứng minh )
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}2003a=2004b=2005c=2003−2004a−b=2004−2005b−c=2005−2003c−a
\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}⇒−(a−b)=−(b−c)=2c−a
Thay vào 4\left(a-b\right)\left(b-c\right)4(a−b)(b−c), ta được :
4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)4(a−b)(b−c)=4(−2c−a)(−2c−a)
\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]⇒4(a−b)(b−c)=4[4(c−a)2]
\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(a−b)(b−c)=(c−a)2( điều phải chứng minh )
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\). Chứng minh rằng 4 .( a - b ) .( b - c ) = ( c - a )2
Cho B = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^2004 + 1/3^2005
Chứng minh rằng B < 1/2
3B=1+1/3+...+1/3^2004
=>2B=1-1/3^2005
=>\(2B=\dfrac{3^{2005}-1}{3^{2005}}\)
=>\(B=\dfrac{3^{2005}-1}{3^{2005}\cdot2}< \dfrac{1}{2}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+ \(\dfrac{1}{3^{2024}}\)+ \(\dfrac{1}{3^{2005}}\)
3B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+\(\dfrac{1}{3^{2004}}\)
3B -B = 1 - \(\dfrac{1}{3^{2005}}\)
2B = 1 - \(\dfrac{1}{3^{2005}}\)
B = ( 1 - \(\dfrac{1}{3^{2005}}\)):2
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{2005}}\) < \(\dfrac{1}{2}\) (đpcm)