Giải:
Đặt \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)
Ta có:
\(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4.\left(-k\right)\left(-k\right)\)
\(=4.k^2\) (1)
Lại có:
\(\left(c-a\right)^2\)
\(=\left(2005k-2003k\right)^2\)
\(=\left(2k\right)^2\)
\(=4k^2\) (2)
Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(a+b\right)=\left(c-a\right)^2\)
\(\Rightarrowđpcm\).
Chúc bạn học tốt!!!
Đặt:
\(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4.-k.-k=4k^2\)
\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=2k^2=4k^2\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
\(\rightarrowđpcm\)
Bài này mk làm rồi bạn, vào câu hỏi tương tự nhé!