\(\dfrac{a+2003}{a-2003}=\dfrac{b-2004}{b+2004}\)
\(\Leftrightarrow\left(a+2003\right)\left(b+2004\right)=\left(a-2003\right)\left(b-2004\right)\)
\(\Leftrightarrow ab+2004a+2003a+2003\cdot2004=ab-2004a-2003a+2003\cdot2004\)
\(\Leftrightarrow4008a=4006b\)
=>a/b=2003/2004
hay a/2003=b/2004