3B=1+1/3+...+1/3^2004
=>2B=1-1/3^2005
=>\(2B=\dfrac{3^{2005}-1}{3^{2005}}\)
=>\(B=\dfrac{3^{2005}-1}{3^{2005}\cdot2}< \dfrac{1}{2}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+ \(\dfrac{1}{3^{2024}}\)+ \(\dfrac{1}{3^{2005}}\)
3B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+\(\dfrac{1}{3^{2004}}\)
3B -B = 1 - \(\dfrac{1}{3^{2005}}\)
2B = 1 - \(\dfrac{1}{3^{2005}}\)
B = ( 1 - \(\dfrac{1}{3^{2005}}\)):2
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{2005}}\) < \(\dfrac{1}{2}\) (đpcm)