Bài 1(1 điểm)
\(\left(2014.a+3.b+1\right).\left(2014^a+2014.a+b\right)=225\)
Cho \(A=\left(2014+1\right).\left(2014+2\right).\left(2014+3\right)+.....+\left(2014+2014\right)\)
Chứng minh rằng A chia hết cho 2\(^{2014}\)
Tính \(A=a^{2014}+b^{2014}\) với a, b là các số thực thoả mãn \(2\left(a^2+1\right)\left(b^2+1\right)=\left(a+1\right)\left(b+1\right)\left(ab+1\right)\)
\(A=\frac{\left(1-2\right).\left(1+2\right)}{2^2}.\frac{\left(1-3\right).\left(1+3\right)}{3^2}.......\frac{\left(1-2013\right).\left(1+2013\right)}{2013^2}.\frac{\left(1-2014\right).\left(1+2014\right)}{2014^2}\)
(x – 2014)^3 + (x + 2012)^3 = 8(x – 1)^3
\(\Leftrightarrow\left(x-2014\right)^3+\left(x+2012\right)^3=\left(2x-2\right)^3\)(1)
Đặt \(\hept{\begin{cases}x-2014=a\\x+2012=b\\2x-2=c\end{cases}}\)thay vào pt (1) ta được:
\(a^3+b^3=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-c^3-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-ab\left(a+b\right)=0\)(2)
Thay \(a=x-2014;b=x+2012;c=2x-2\)hay \(a+b-c=0\)vào (2) ta được:
\(\left(x-2014\right)\left(x+2012\right)\left(2x-2\right)=0\)
... nốt
Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối
phải trừ 3ab(a+b) chứ nhỉ ???
Con thỏ trắng có bộ lông đen thui
:V ha ha cảm ơn nhé quên mất @@
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
Bài 3.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)
Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)
Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)
Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).
Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)
\(\Rightarrow c=\pm\dfrac{1}{6}\).
Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)
Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)
Bài 1 cho x,y,z>2014 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1007}\)
chứng minh rằng \(\sqrt{x+y+z}\ge\sqrt{x-2014}+\sqrt{y-2014}+\sqrt{z-2014}\)
Bài 2
cho a,b,c>0. chứng minh rằng
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{4}{ab+bc+ca}\)
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<
Tìm các số tự nhiên a;b thỏa mãn:
\(\left(2014^a+1\right)\left(2014^a+2\right)=3^b+5\)
CM:a)\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< 2\left(\sqrt{a}-\sqrt{b}\right)biet:a=b+1=c+2\left(c>0\right).\)
b)\(CM:B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}nguyen\)
b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\)
=> \(2014^2+1=2015^2-2.2014\)
=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\)
=> đpcm
A=\(\frac{5.1+2}{1\left(1+1\right)\left(1+2\right)}\) +\(\frac{5.2+2}{2\left(2+1\right)\left(2+2\right)}\)+...+\(\frac{5.2014+2}{2014\left(2014+1\right)\left(2014+2\right)}\). Tính A
\(A=\left(\frac{5}{1.2.3}+\frac{5.2}{2.3.4}+....+\frac{5.2014}{2014.2015.2016}\right)+\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{2014.2015.2016}\right)\)
\(A=\left(\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{2015.2016}\right)+\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(A=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)+\frac{1}{2}-\frac{1}{2015}+\frac{1}{2016}\)
\(A=\frac{5}{2}-\frac{5}{2016}+\frac{1}{2}-\frac{1}{2015}+\frac{1}{2016}=3-\frac{1}{504}-\frac{1}{2015}\)