CMR: \(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)( n ∈ N; n ≥ 3)
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
cho mọi số nguyên dương n>2 cmr \(\dfrac{1}{3}\)\(\dfrac{ }{ }\). \(\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}........\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
tìm số tự nhiên thỏa mãn điều kiện
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+........+n\cdot2^n=2^{n+11}\)
rút gọn : \(A=\left(\dfrac{2}{5}-\dfrac{5}{2}+\dfrac{1}{10}\right):\left(\dfrac{5}{2}-\dfrac{2}{3}+\dfrac{1}{12}\right)\)
tính:\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+......+\dfrac{1}{2017}}{\dfrac{2016}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+.......+\dfrac{1}{2016}}\)
CMR :\(5a+2b⋮13\Leftrightarrow9a+b⋮13\left(a,b\in Z\right)\)
Câu 1: Tìm a để \(\dfrac{5a-17}{4a-23}\) có giá trị lớn nhất.
Câu 2: Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1998}\) ; m, n \(\in N\) . CMR m \(⋮\) 1999
Câu 3: CMR \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{5}{8}\)
Câu 4: CMR \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{n}{5^{n+1}}+...+\dfrac{11}{5^{12}}< \dfrac{1}{16}\) với n là STN.
Giúp mk với !
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
Câu 1: Tìm a để \(\dfrac{5a-17}{4a-23}\) có giá trị lớn nhất.
Câu 2: Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1998}\) ; m, n \(\in N\) . CMR m \(⋮\) 1999
Câu 3: CMR \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{5}{8}\)
Câu 4: CMR \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{n}{5^{n+1}}+...+\dfrac{11}{5^{12}}< \dfrac{1}{16}\) với n là STN.
Giúp mk với !
CMR: Với mọi số tự nhiên n\(_{\ge}\)3 thì
\(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)
Nhận xét :
\(\dfrac{1}{k^3}< \dfrac{1}{2}\left(\dfrac{1}{\left(k-1\right)k}-\dfrac{1}{k\left(k+1\right)}\right)\)
Áp dụng nhận xét trên ta có:
\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)
\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)< \dfrac{1}{12}\)
\(=>B< \dfrac{1}{12}\)
CHÚC BẠN HỌC TỐT..................
\(\)
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)
Chứng minh: \(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}.\dfrac{4^3+1}{4^3-1}....\dfrac{9^3+1}{9^3-1}< \dfrac{3}{2}\)
\(B=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+....+\dfrac{1}{n!}< 1\)
\(C=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+....+\dfrac{n-1}{n!}< 1\)
D=\(\left(1-\dfrac{2}{6}\right)\left(1-\dfrac{2}{12}\right)\left(1-\dfrac{2}{20}\right)....\left(1-\dfrac{2}{n\left(n+1\right)}\right)>\dfrac{1}{3}\)
Chứng minh rằng với mọi số tự nhiên \(n\ge3:\)
\(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)
Ta có: \(\dfrac{1}{3^3}\) < \(\dfrac{1}{2.3.4}\)
\(\dfrac{1}{4^3}\) < \(\dfrac{1}{3.4.5}\)
.......
\(\dfrac{1}{n^3}\) < \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow\) \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\) + ...+ \(\dfrac{1}{n^3}\) < \(\dfrac{1}{2.3.4}\)
+ \(\dfrac{1}{3.4.5}\) + ... + \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) Có:\(\dfrac{1}{2.3.4}\)+ \(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{3.4}\)- \(\dfrac{1}{4.5}\)+ ... +\(\dfrac{1}{n\left(n-1\right)}\)- \(\dfrac{1}{n}\) + \(\dfrac{1}{n}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{12}\)- \(\dfrac{1}{2n\left(n+1\right)}\) < \(\dfrac{1}{12}\) Vậy B = \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\)+ \(\dfrac{1}{5^3}\)+ ... + \(\dfrac{1}{n^3}\) < \(\dfrac{1}{12}\) Chúc bn học tốt