Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ích Bách

Chứng minh rằng với mọi số tự nhiên \(n\ge3:\)

\(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)

oOo Min min oOo
5 tháng 12 2017 lúc 0:44

Ta có: \(\dfrac{1}{3^3}\) < \(\dfrac{1}{2.3.4}\)

\(\dfrac{1}{4^3}\) < \(\dfrac{1}{3.4.5}\)

.......

\(\dfrac{1}{n^3}\) < \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow\) \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\) + ...+ \(\dfrac{1}{n^3}\) < \(\dfrac{1}{2.3.4}\)

+ \(\dfrac{1}{3.4.5}\) + ... + \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) Có:\(\dfrac{1}{2.3.4}\)+ \(\dfrac{1}{3.4.5}\)​+...+\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{3.4}\)- \(\dfrac{1}{4.5}\)+ ... +\(\dfrac{1}{n\left(n-1\right)}\)- \(\dfrac{1}{n}\) + \(\dfrac{1}{n}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{12}\)- \(\dfrac{1}{2n\left(n+1\right)}\) < \(\dfrac{1}{12}\) Vậy B = \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\)+ \(\dfrac{1}{5^3}\)+ ... + \(\dfrac{1}{n^3}\) < \(\dfrac{1}{12}\) Chúc bn học tốt haha

Các câu hỏi tương tự
Trần Ích Bách
Xem chi tiết
Yuki Nguyễn
Xem chi tiết
:vvv
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
casio
Xem chi tiết
Thu Hà Nguyễn
Xem chi tiết
casio
Xem chi tiết
Ba Dao Mot Thoi
Xem chi tiết