Cho biểu thức:
(x-3)2=(2x+1)2
Cho biểu thức
(\(\dfrac{x^2-2x}{2x^2+8}\) - \(\dfrac{2x^2}{8-4x+2x^2-x^3}\)).(1-\(\dfrac{1}{x}\)-\(\dfrac{2}{x^2}\))(x≠0;x≠2)
rút gọn biểu thức
tính giá trị biểu thức với x1/2
cho biểu thức
P=(\(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\)).(1-\(\dfrac{1}{x}-\dfrac{2}{x^2}\)) ( x≠0; x≠2)
rút gọn biểu thức P
tính giá trị biểu thức P với x=1/2
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)
\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)
\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x+1}{2x}\)
b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:
\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)
Cho biểu thức: A=(1-2x/2x+2x/2x-1+1/2x-4x^2):(3/x^2-2x^3) với x khác 0 và 1/2 a) Rút gọn biểu thức A.
b) Tìm giá trị của x để biểu thức A đạt giá trị lớn nhất.
Câu 1. Cho hai biểu thức A =\(\dfrac{x+x^2}{2-x}\)và B = \(\dfrac{2x}{x+1}\)+\(\dfrac{3}{x-2}\)- \(\dfrac{2x^2+1}{x^2-x-2}\) a) Tính gía trị biểu thức A khi |2x-3|= 1
b) Tìm ĐKXĐ và tính giá trị biểu thức B
c) Tìm số nguyên x lớn nhất để P = A.B đạt giá trị lớn nhất
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
Cho biểu thức sau C = (\(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2z+4x-8}\)).(\(\dfrac{2}{x^2}-\dfrac{x-1}{x}\))
a) Tìm điều kiện xác định của biểu thức C
b) Rút gọn biểu thức C
c) Tính giá trị của biểu thức C khi x = 2017
d) Tìm x để biểu thức C > \(\dfrac{1}{2}\)
e) Tìm x ∈ Z để giá trị biểu thức C ∈ Z
a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)
b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)
c: Thay x=2017 vào C, ta được:
\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
Cho biểu thức: A = x+5/2x – x-6/5-x – 2x^2-2x-50/2x^2-10x
a) Rút gọn biểu thức A
b) Tìm x biết A = 1/3
a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
b: Để A=1/3 thì x-5/2x=1/3
=>3x-15=2x
=>x=15
Câu 2 :cho biểu thức (x-2/2x-2+3/2x-2-x+3/2x+2):1-x-3/x+1
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Tính giá biểu thức với x=2005;x=1
c) Tìm giá trị của x để A có giá trị = -1002
a:
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-2}{2\left(x-1\right)}+\dfrac{3}{2\left(x-1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x+1-x+3}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2}{4\left(x-1\right)}=\dfrac{-1}{2\left(x-1\right)}\)
Khi x=2005 thì \(A=\dfrac{-1}{2\cdot\left(2005-1\right)}=-\dfrac{1}{4008}\)
Vì x=1 không thỏa mãn ĐKXĐ
nên khi x=1 thì A không có giá trị
c: Để A=-1002 thì \(\dfrac{-1}{2\left(x-1\right)}=-1002\)
=>\(2\left(x-1\right)=\dfrac{1}{1002}\)
=>\(x-1=\dfrac{1}{2004}\)
=>\(x=\dfrac{1}{2004}+1=\dfrac{2005}{2004}\left(nhận\right)\)
bài 1 : tìm x, biết
a, (x - 2 )^2 - (x - 3).(x + 3)= 17
b, 4(x - 3)^2 - (2x - 1).(2x + 1)= 10
c, (x - 4)^2 - (x - 2).(x + 2) = 36
d, (2x + 3)^2 - (2x - 1).(2x + 1) = 10
bài 2: cho biểu thức P = 3x^2 + 3x/(phần) (x+1).(2x - 6)
a, tìm điều kiện của x để biểu thức P xác định
b, tìm gtri của x sao cho P = 1
bài 3: cho biểu thức P= x/(phần) x-1 + x^2 + 1/(phần) 1- x^2
a, tìm x để biểu thức P có nghĩa
b, rút gọn biểu thức P
c, tìm giá trị của x sao cho P = -1
m.n ơi giúp em vs ạ em cảm ơn m,n nhìu
Bài 1.
a) ( x - 2)2 - ( x + 3)( x - 3)= 17
=> x2 - 4x + 4 - x2 + 9 - 17 = 0
=> -4x - 4 = 0
=> -4( x + 1 ) = 0
=> x = -1
Vậy,...
b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10
=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0
=> - 24x + 36 - 9 = 0
=> -24x + 27 = 0
=> -3( 8x - 9) = 0
=> x = \(\dfrac{9}{8}\)
Vậy,...
c) ( x - 4)2 - ( x - 2)( x + 2)= 36
=> x2 - 8x + 16 - x2 + 4 - 36 = 0
=> -8x - 16 = 0
=> -8( x + 2) = 0
=> x = -2
d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10
=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0
=> 12x = 0
=> x = 0
Vậy,...
Bài 2.
\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a) ĐKXĐ : ( x + 1)( 2x - 6) # 0
=> 2( x + 1)( x - 3) # 0
=> x # -1 ; x # 3
Vậy,...
b) Để P = 1
=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)
=> 3x = 2x - 6
=> x = -6 ( thỏa mãn ĐKXĐ)
Vậy,...
Bài 3.
P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
a) Để P có nghĩa tức P xác định .
ĐKXĐ : x - 1 # 0 => x # 1
* 1 - x2 # 0 => x # 1 ; x # -1
Vậy,...
b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)
c) Để P = -1 thì :
\(\dfrac{1}{x+1}=-1\)
=> -x - 1 = 1
=> x = -2 ( thỏa mãn ĐKXĐ )
Vậy,...
cho biểu thức:A=[(1/x-1)+(x/x^3-1).(x^2+x+1/x+1)]:2x+1/x^2+2x+1
a,rút gọn biểu thức A
b,tính giá trị của biểu thức khi x=1/2
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)
a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b) Thay \(x=\frac{1}{2}\)vào A, ta được :
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)