CMR: \(2\left(a^3+b^3\right)\) ≥ \(\left(a+b\right)\left(a^2+b^2\right)\) với a, b > 0
Cmr nếu a+b+c=0 thì:
a) \(10\left(a^7+b^7+c^7\right)=7\left(a^2+b^2+c^2\right)\left(a^5+b^5+c^5\right)\)
b) \(a^5\left(b^2+c^2\right)+b^5\left(c^2+a^2\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
Cho a+b+c=0 CMR
\(a^5.\left(b^2+c^2\right)+b^5.\left(c^2+a^2\right)+c^5.\left(a^2+b^2\right)=\frac{1}{2}.\left(a^3+b^3+c^3\right).\left(a^4+b^4+c^4\right)\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1,Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) .Cmr: \(a=b=c=1\)
2,Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\) .Cmr: \(a=b=c\)
3,Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) .Cmr: \(a=b=c\)
4,Cho a,b,c,d là các số khác 0 và:
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) .Cmr: \(\dfrac{a}{c}=\dfrac{b}{d}\)
5,Cho \(x^2-y^2-z^2=0\) .Cmr: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
HELP ME!mik cần gấp lắm rồi!Thank trước nhé!
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
2) (a+b+c)2=3(ab+bc+ac) =>(a-b)2+(b-c)2+(c-a)2=0
=>a-b=b-c=c-a=0 =>a=b=c
CMR nếu a+b>=0 thì
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^3+b^3\right)>=4\left(a^6+b^6\right)\)
CMR với a,b,c>0 thì \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Với các số thực dương a,b ta có:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Tương tự:
\(a^3+c^3\ge ac\left(a+c\right)\)
\(b^3+c^3\ge bc\left(b+c\right)\)
Cộng vế:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "=" xảy ra khi a=b=c
Để chứng minh bất đẳng thức:
\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right) \geq a b \left(\right. a + b \left.\right) + b c \left(\right. b + c \left.\right) + c a \left(\right. c + a \left.\right)\)
với \(a , b , c > 0\), ta sẽ sử dụng các phương pháp như bất đẳng thức \(A M - G M\) hoặc khai triển các biểu thức và đối chiếu các vế.
Bước 1: Mở rộng vế phảiTrước tiên, ta mở rộng vế phải của bất đẳng thức:
\(a b \left(\right. a + b \left.\right) + b c \left(\right. b + c \left.\right) + c a \left(\right. c + a \left.\right)\)
Khai triển từng phần:
\(a b \left(\right. a + b \left.\right) = a^{2} b + a b^{2}\)\(b c \left(\right. b + c \left.\right) = b^{2} c + b c^{2}\)\(c a \left(\right. c + a \left.\right) = c^{2} a + c a^{2}\)
Vậy vế phải của bất đẳng thức trở thành:
\(a b \left(\right. a + b \left.\right) + b c \left(\right. b + c \left.\right) + c a \left(\right. c + a \left.\right) = a^{2} b + a b^{2} + b^{2} c + b c^{2} + c^{2} a + c a^{2}\)
Bước 2: So sánh với vế tráiTiếp theo, ta có vế trái là:
\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right)\)
Như vậy, ta cần chứng minh:
\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right) \geq a^{2} b + a b^{2} + b^{2} c + b c^{2} + c^{2} a + c a^{2}\)
Bước 3: Sử dụng bất đẳng thức AM-GMBất đẳng thức \(A M - G M\) (trung bình cộng - trung bình nhân) cho ta kết quả sau với các số dương:
\(\frac{a^{3} + a^{3} + b^{3}}{3} \geq a b \text{ho}ặ\text{c} a^{3} + b^{3} \geq 3 a b\)
Áp dụng tương tự cho các cặp khác nhau, ta có:
\(a^{3} + b^{3} \geq 3 a b , b^{3} + c^{3} \geq 3 b c , c^{3} + a^{3} \geq 3 c a\)
Bây giờ, cộng tất cả các bất đẳng thức trên:
\(\left(\right. a^{3} + b^{3} \left.\right) + \left(\right. b^{3} + c^{3} \left.\right) + \left(\right. c^{3} + a^{3} \left.\right) \geq 3 \left(\right. a b + b c + c a \left.\right)\)
Hay:
\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right) \geq 3 \left(\right. a b + b c + c a \left.\right)\)
Bước 4: Kết luậnVậy ta có:
\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right) \geq a b \left(\right. a + b \left.\right) + b c \left(\right. b + c \left.\right) + c a \left(\right. c + a \left.\right)\)
Do đó, bất đẳng thức đã được chứng minh.
Kết luận:\(2 \left(\right. a^{3} + b^{3} + c^{3} \left.\right) \geq a b \left(\right. a + b \left.\right) + b c \left(\right. b + c \left.\right) + c a \left(\right. c + a \left.\right)\)
Vậy, với \(a , b , c > 0\), bất đẳng thức trên là đúng.
1, Cho a, b, c thỏa mãn :
\(\left\{{}\begin{matrix}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{matrix}\right.\\ CMR:abc=0\)
2, a, CMR nếu x + y + z = 0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
b, Cho a, b,c, d thỏa mãn : a + b + c + d = 0
CMR : \(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Mọi người giải giúp mk, đc bài nào hay bài ấy nhé!
2 ) b )
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)
Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:
\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Cho a,b,c > 0
CMR: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)>4\left(a+b+c\right)^2\)