Ta có:
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)
\(\Rightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+a^2+b^2\ge a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)