Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HUỲNH TÔ ÁI VÂN
Xem chi tiết
Kẻ Vô Danh
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 10 2016 lúc 17:18

\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)

\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)

Thay a vào P để tính.

Phạm Thùy Linh
23 tháng 3 2020 lúc 9:38

có ai tên cuongkim ở hoidap 247 ko

Khách vãng lai đã xóa
Vũ Thị Thanh Trúc
25 tháng 8 2020 lúc 19:28

@Phạm Thuỳ Linh đây ko phải chỗ tìm người thân đâu bạn ơi!

Khách vãng lai đã xóa
Trần Hippo
Xem chi tiết
Thắng Nguyễn
19 tháng 7 2018 lúc 15:46

Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)

\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)

\(\Leftrightarrow a^3-3a-110=0\)

\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)

\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)

Duy Cr
Xem chi tiết
Akai Haruma
14 tháng 1 2020 lúc 10:24

Bài 1:

$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$

$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$

$\Leftrightarrow a^3=110+3a$

$\Leftrightarrow a^3-3a-110=0$

$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$

$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$

$\Leftrightarrow (a-5)(a^2+5a+22)=0$

Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$

Vậy........

$a=

Khách vãng lai đã xóa
Akai Haruma
14 tháng 1 2020 lúc 10:27

Bài 2:

Bạn xem tại đây:

Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến

Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS

Khách vãng lai đã xóa
Akai Haruma
14 tháng 1 2020 lúc 10:31

Bài 2:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+x+y+1=4\\ yz+y+z+1=9\\ zx+z+x+1=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

$\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16$

$\Rightarrow (x+1)(y+1)(z+1)=24$ (do $x,y,z$ là số dương)

Từ đây kết hợp với $(1)$ suy ra:

\(z+1=\frac{(x+1)(y+1)(z+1)}{(x+1)(y+1)}=\frac{24}{4}=6\Rightarrow z=5\)

\(x+1=\frac{24}{9}\Rightarrow x=\frac{5}{3}\)

\(y+1=\frac{24}{16}\Rightarrow y=\frac{1}{2}\)

Vậy............

Khách vãng lai đã xóa
dam thu a
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2020 lúc 9:01

Casio cho kết quả \(\frac{5+\sqrt{21}}{2}\)

Bạn tự lập phương rồi tách ngược là được

Khách vãng lai đã xóa
James Tommy
Xem chi tiết
nyuyen van binh
15 tháng 6 2017 lúc 16:20

minh văn nguyễn

Nguyễn Thị Thu Phương
Xem chi tiết
Thùy Cái
19 tháng 7 2021 lúc 13:27

\(1) \sqrt{9a^2.b^2}\)=3ab

\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)

\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)

\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)

\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)

\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)

 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 13:21

1) \(\sqrt{9a^2b^2}=3ab\)

2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)

4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)

....
Xem chi tiết
Trên con đường thành côn...
21 tháng 8 2021 lúc 22:08

undefined

Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 22:12

a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)

c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)

Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
8 tháng 7 2023 lúc 17:46

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)