Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
๖Fly༉Donutღღ
25 tháng 2 2018 lúc 9:27

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có: 

a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1) 

* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0 

⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3) 

⇒ abc ≤ 2ab+2bc+2ca - 4 (2)

Dấu '=' khi có 1 số = 2 

thay (1) vào (2) ta có: 

a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3) 

Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4 

⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có 

a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm) 

Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua 

Bình luận (0)
Yim Yim
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Nhật Giang
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Thắng Nguyễn
8 tháng 2 2017 lúc 21:33

Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra

\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)

Từ điều kiện \(0\le b,c\le a\le2\). ta có 

\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)

Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).

Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)

Từ (2) và (3). Như vậy đã chứng minh xong

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)

Bình luận (0)
Thắng Nguyễn
8 tháng 2 2017 lúc 22:41

Let \(a\ge b\ge c\)

Since \(f\left(x\right)=x^3\)is a convex function on  \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)

By Karamata's inequality we obtain 

\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)

Done!  :)))

P/s:viết tiếng anh giỏi quá =))

Bình luận (0)
Thắng Nguyễn
9 tháng 2 2017 lúc 13:27

cái cách dưới cho mk sửa chút nhé 

cái dòng thứ 5 từ trên xuống, chỗ công thức mà mình đánh dấu là (3) đó sửa thành

\(\left(a-\frac{3}{2}\right)^2\le\frac{1}{4}\left(3\right)\) nhé !

Bình luận (0)
vô va
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
25 tháng 7 2018 lúc 11:34

Theo hằng đẳng thức đáng nhớ ta có :

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca+abc\right)\left(1\right)\)

Ta lại có : \(0\le a,b,c\le2\Rightarrow\left\{{}\begin{matrix}abc\ge0\\\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow8-4a-4b-4c+2ab+2bc+2ca-abc\ge0\)

\(\Leftrightarrow2ab+2bc+2ca-4\ge abc\Leftrightarrow abc\le-4\) ( Vì \(a,b,c\ge0\) ) \(\left(2\right)\)

Thay (2) vào (1) ta được :

\(a^3+b^3+c^3\le3\left(a^2+b^2+c^2-ab-bc-ca-4\right)=3\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]=3\left(9-3\left(ab+bc+ca\right)\right)\)

Mà từ (2) ta lại có : \(2ab+2bc+2ca\ge abc+4=4\Rightarrow ab+bc+ca\ge2\Rightarrow-3\left(ab+bc+ca\right)\le-6\)

\(\Rightarrow a^3+b^3+c^3\le3\left(9-6\right)=9\)

Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị

Bình luận (1)
Hàn Vũ
20 tháng 7 2019 lúc 20:50

Giả sử \(a=max\left\{a,b,c\right\}\)

Do đó \(3=a+b+c\le3a\)

\(\Rightarrow a\in\left[1;2\right]\)

Ta có: \(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9+\left(a-1\right)\left(a-2\right)\le9\)Vậy bài toán đã được chứng minh

Bình luận (0)
Nguyễn Thị Thúy Ngân
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 5 2021 lúc 17:06

Áp dụng BĐT cosi:

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)

Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)

Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)

Bình luận (0)
Alan
Xem chi tiết
 ☘ Nhạt ☘
Xem chi tiết
Trần Phúc Khang
13 tháng 11 2019 lúc 5:41

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 2 2020 lúc 9:27

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

Bình luận (0)
 Khách vãng lai đã xóa