Tính: 2(1-x+x2-x3+x4-...+x2n)-x2n+1
cho
f(x)= x2n-x2n-1+....+x2-x+1 (xϵN)
g(x)=-x2n+1+x2n-x2n-1+....+x2-x=1
tính giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\)
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
cho 2 da thuc
m(x)=3x3+x2+4x4-x-3x3+5x4+x2
n(x)=-x2-x4+4x3-x2-5x3+3x+1+x
a, thu gon va sap sep theo luy thua giam dan
b tinh m(x)+n(x) ; n(x)-m(x)
c dat p(x)=m(x)+n(x) tinh p (x)=-2
`@` `\text {dnammv}`
`a,`
`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`
`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`
`= 9x^4+2x^2-x`
`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`
`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`
`= -x^4-x^3-2x^2+4x+1`
`b,`
`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`
`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`
`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`
`= 8x^4-x^3+3x+1`
`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`
`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`
`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`
`= -10x^4-x^3-4x^2+5x+1`
`c,`
`P(x)=M(x)+N(x)`
`P(x)= 8x^4-x^3+3x+1`
Thay `x=-2`
`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`
`= 8*16+8-6+1`
`= 136-6+1=131`
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n , biết a 2 11 = a 3 42 . Tìm số hạng chứa x 3 trong khai triển trên.
A. 210
B. 55
C. 615
D. 265
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
-Đáp án cuối cùng: \(n=3k+1\) hay \(n=3k+2\)
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Biểu thức D = x ( x 2 n - 1 + y ) – y ( x + y 2 n - 1 ) + y 2 n – x 2 n + 5 , D có giá trị là:
A. 2 y 2 n
B. -5
C. x 2 n
D. 5
Ta có
D = x ( x 2 n - 1 + y ) – y ( x + y 2 n - 1 ) + y 2 n – x 2 n + 5
= x . x 2 n - 1 + x . y – y . x – y . y 2 n - 1 + y 2 n – x 2 n + 5
= x 2 n + x y – x y – y 2 n + y 2 n – x 2 n + 5
= ( x 2 n – x 2 n ) + ( x y – x y ) + ( y 2 n – y 2 n ) + 5
= 0 + 0 + 0 + 5 = 5
Đáp án cần chọn là: D
Thực hiện phép tính g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4); a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4); b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3); d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b) e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
Gọi x1 , x2 là nghiệm của pt x^2+2009x+1=0 và x3,x4 là nghiệm của pt x^2 +2010 +1=0
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Giá trị số tự nhiên n để phép chia x 2 n : x 4 thực hiện được là:
A. n Є N, n > 2
B. n Є N, n ≥ 4
C. n Є N, n ≥ 2
D. n Є N, n ≤ 2
Để phép chia x 2 n : x 4 thực hiện được thì n Є N, 2n – 4 ≥ 0 ó n ≥ 2, n Є N
Đáp án cần chọn là: C