Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

LuKenz
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 21:26

Từ H kẻ \(HD\perp AC\Rightarrow HD||BK\) (cùng vuông góc AC)

Mà ABC cân tại A \(\Rightarrow\) H là trung điểm BC \(\Rightarrow HC=\dfrac{BC}{2}\)


\(\Rightarrow\) HD là đường trung bình tam giác BCK

\(\Rightarrow HD=\dfrac{BK}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao HD ứng với cạnh huyền:

\(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{CH^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{BK}{2}\right)^2}=\dfrac{1}{AH^2}+\dfrac{1}{\left(\dfrac{BC}{2}\right)^2}\)

\(\Leftrightarrow\dfrac{4}{BK^2}=\dfrac{1}{AH^2}+\dfrac{4}{BC^2}\)

\(\Leftrightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 21:27

undefined

lomg vu
Xem chi tiết
OoO Kún Chảnh OoO
30 tháng 8 2015 lúc 16:37

kẻ 1 đường thẳng vuông góc với BC cắt AC ở E

Xét tam giác CBE vuông tại B có:

1/BK^2=1/BC^2+1/BE^2 (hệ thức lượng)(1)

ta lại có:

*AH vuông góc với BC

BE vuông góc với BC

=>AH//BE (2)

*tam giác ABC cân tại A có:

AH là đường cao của tam gic1 ABC nên:

AH cũng là đường trung tuyến của tam giác ABC

=>H là trung điểm của BC (3)

từ (2) và (3) suy ra:

A là trung điểm của CE (4)

từ (3) và (4) suy ra:

AH là đường trung bình của tam giác CBE 

=> AH=BE/2

=>BE=2AH

=>BE2=4AH2 (5)

từ (1) và (5) suy ra:

1/BK^2=1/BC^2+1/4AH^2

Chanhh
Xem chi tiết
Dương Linh
Xem chi tiết
HUỲNH MINH TRÍ
29 tháng 5 2022 lúc 21:00

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

Minh acc 3
29 tháng 5 2022 lúc 21:02

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

Bùi Trần Hương Giang
Xem chi tiết
Akai Haruma
26 tháng 12 2022 lúc 13:26

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

Akai Haruma
26 tháng 12 2022 lúc 13:28

Hình bài 2:

Akai Haruma
26 tháng 12 2022 lúc 13:57

Bài 3:
Xét tam giác $ABH$ và $ACK$ có:
$\widehat{AHB}=\widehat{AKC}=90^0$
$\widehat{A}$ chung

$\Rightarrow \triangle ABH\sim \triangle ACK$ (g.g)

$\Rightarrow \frac{AB}{AH}=\frac{AC}{AK}$

Xét tam giác $AKH$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AH}{AB}=\frac{AK}{AC}$ (cmt)

$\Rightarrow \triangle AKH\sim \triangle ACB$ (c.g.c)

$\Rightarrow \widehat{K_2}=\widehat{ACB}$ và $\widehat{H_1}=\widehat{ABC}$

Xét tam giác $KEB$ và $CHB$ có:

$\widehat{KEB}=\widehat{CHB}=90^0$
$\widehat{K_1}=\widehat{K_2}=\widehat{ACB}=\widehat{HCB}$ (cmt)

$\Rightarrow \triangle KEB\sim \triangle CHB$ (g.g)

$\Rightarrow \frac{KE}{KB}=\frac{CH}{CB}(1)$
Tương tự: 

$\triangle CFH\sim \triangle CKB$ (c.g.c)

$\Rightarrow \frac{CH}{FH}=\frac{CB}{KB}(2)$

Từ $(1); (2)\Rightarrow \frac{KE}{KB}.\frac{CH}{FH}=\frac{CH}{CB}.\frac{CB}{KB}$

$\Rightarrow \frac{KE}{HF}=1$
$\Rightarrow KE=HF$ (đpcm)

LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Giao PX
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 0:48

Gọi giao của AH với BC là E

=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có

góc EBA chung

=>ΔBIC đồng dạng với ΔBEA

=>BI/BE=BC/BA

=>BE*BC=BA*BI

Xét ΔCKB vuông tại K và ΔCEA vuông tại E có

góc KCB chung

=>ΔCKB đồng dạng với ΔCEA

=>CK/CE=CB/CA

=>CK*CA=CE*CB

BI*BA+CK*CA

=BE*BC+CE*BC

=BC^2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2017 lúc 13:57

a, Chứng minh được  B K A ^ = 90 0

b, Gọi O là trung điểm AI

Ta có:

+ OK = OA =>  O K A ^ = O A K ^

+  O A K ^ = H B K ^ (cùng phụ  A C B ^ )

+ HB = HK =>  H B K ^ = H K B ^

=> O K A ^ = H K B ^ ⇒ H K O ^ = 90 0