Cho ΔABC cân tại A, gọi M là trung điểm của cạnh BC
a. Chứng minh: ΔABM= ΔACM; Tính số đo góc AMB và góc AMC suy ra AM ⊥ BC
b. Chứng minh AI là phân giác của góc A
Cho ΔABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh ΔABM = ΔACM
b)Lấy H thuộc tia đối của BM, K thuộc tia đối CM sao cho BH = CK. Chứng minh ΔABH = ΔACK
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.c.c)
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM b) Chứng minh rằng AK = 2.MC c) Tính số đo của ∠MAK
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC=2MC
Cho ΔABC cân tại A. Vẽ hai đường trung tuyến BM và CN cắt nhau tại I.
a) Chứng minh: ΔABM = ΔACN
b) Gọi H là giao điểm của AI và BC. Chứng minh: AH⊥BC
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
Cho ΔABC cân ở A. Trên cạnh BC lấy điểm M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc với AB, NF vuông góc với AC (E ϵ AB, F ϵ AC), EM cắt FN tại H. Chứng minh:
a) ΔABM = ΔACN.
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC.
c) EF // BC.
d) Chứng mình: A, D, H thẳng hàng.
1. Cho ΔABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC
a) Chứng minh rằng ΔABC = ΔACM và AM là đường trung trực của BC
b) Trên tia đối của tia MA , lấy điểm D sao cho MD = MA . Chứng minh AB //CD
Vẽ hình giùm em
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
cho δabc có ab = ac và m là trung điểm của bc. trên tia am kéo dài lấy điểm d sao cho ma= md. lấy i là trung điểm của ab; k là trung điểm của cd. chứng minh a) δabm = δacm b) ab = cd và ab//cd c) i; m; k thẳng hàng
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
cho tam giác ABC cân tại A, Mlaf trung điểm của BC
a)chứng minh rằng ΔABM=ΔACM, từ đó chứng minh AM vuông góc BC
b)Cho BC=6cm, AM=4cm. Hãy tính độ dài cạnh AC
c) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Chứng minh ΔADE cân
d)TỪ B và C kẻ BH và CK theo thứ tự vuông góc với AD và AE (HϵAD, KϵAE). Chứng minh rằng BH=CK
mình cần gấp ạ
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Chứng minh: a. ΔABM = ΔACM b. AM là tia phân giác của góc BAC c. AM là đường trung trực của đoạn thẳng BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
nên \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của \(\widehat{BAC}\)
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AM là đường trung trực của BC
Cho ΔABC cân tại A .Gọi M là trung điểm của BC . Kẻ ME ⊥BC , MF⊥AC
a) c/m ΔABM bằng ΔACM
b) c/m ΔAEF cân
c) c/m EF//BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
c: Xét ΔABC có
AE/AB=AF/AC
Do đó: EF//BC
Các bạn vẽ cả hình giúp mình, mình cảm ơn ạ!
Cho ΔABC vuông tại A. Trên cạnh BC, lấy điểm D sao cho AB = BD. Gọi M là trung điểm của AD. Kéo dài BM cắt AC tại I
a) Chứng minh rằng ΔABM = ΔDBM
b) Chứng minh ID ⊥ BC
c) Kéo dài DI cắt tia BA tại E. Chứng minh rằng IE=IC
d) Kẻ IK vuông góc với EC tại K. Chứng minh B, I, K thẳng hàng