a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho tam giác ABC, trung tuyên AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Chứng minh AB // CD và AB = CD.
b) Gọi E và F lần lượt là trung điểm của AC và BD. AF cắt BC tại I, DE cắt BC tại K. Chứng minh I là trọng tâm tam giác ABD, K là trọng tâm tam giác ACD.
c) Chứng minh BI = IK = KC.
d) Chứng minh E, M, F thẳng hàng.
Cho ∆ABC có 3 góc nhọn (AB < AC), trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MA=MD .
a) Chứng minh : DAMB = DDMC và AB // CD
b) Gọi F là trung điểm của CD. Tia FM cắt AB tại K. Chứng minh M là trung điểm của KF.
c) Gọi E là trung điểm của AC. BE cắt AM tại G. Chứng minh 3 điểm K, G và trung điểm I của AF thẳng hàng.
Cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng
Cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng
cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM b) Chứng minh rằng AK = 2.MC c) Tính số đo của ∠MAK
Cho tam giác ABC nhọn ( AB<AC) đường trung tuyến am. Trên tia đối của MA lấy điểm D sao cho MD=MA
a) CM tam giác AMB và tam giác DMC và AB // CD
b) Gọi F là trung điểm của CD . Tia FM cắt AD tại K . CM M là trung điểm của KF
c) gọi C là trung điểm của AC. BE cắt Am tại G,I là trung điểm của AF. CM: K,G,I Thẳng hàng
Cho tam giác ABC Gọi M là trung điểm của BC trên tia đối của tia MA lấy điểm D sao cho AD = MD.
a, Chứng minh tam giác AMB bằng tam giác BMC
b, Chứng minh AB = CD và AB song song với CD
c, lấy điểm I trên tia đối của tia AB điểm K trên tia đối của tia DC Chứng minh I,M,K thẳng hàng