Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2021 lúc 21:37

Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?

 

Nguyễn Khánh Ly
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 8 2020 lúc 8:48

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

Khách vãng lai đã xóa
Huỳnh Quang Sang
28 tháng 8 2020 lúc 8:49

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

Khách vãng lai đã xóa
Mun_cuc_suc
Xem chi tiết
Ngô Chi Lan
4 tháng 10 2020 lúc 18:38

a) Ta có: \(\left|x-1\right|+\left|x^2+3\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2+3\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2+3\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2+3\right|=0\)

\(\Rightarrow x^2=-3\) => vô lý

Vậy PT vô nghiệm

Khách vãng lai đã xóa
Ngô Chi Lan
4 tháng 10 2020 lúc 18:40

b) Ta có: \(\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2-1\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2-1\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2-1\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x^2=1\end{cases}}\Rightarrow x=1\)

Vậy x = 1

Khách vãng lai đã xóa
Anh Vy
Xem chi tiết
YangSu
23 tháng 6 2023 lúc 17:27

\(1,\left(3x+2\right)\left(5-x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)

\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)

\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)

\(\Leftrightarrow x=-\dfrac{9}{46}\)

Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)

\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)

\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)

\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)

\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)

\(\Leftrightarrow6x-4=16\)

\(\Leftrightarrow x=\dfrac{10}{3}\)

Vậy \(S=\left\{\dfrac{10}{3}\right\}\)

\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)

\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)

\(\Rightarrow5x-5=4x+8\)

\(\Rightarrow x=13\left(tmdk\right)\)

Vậy \(S=\left\{13\right\}\)

hàn hàn
Xem chi tiết
HT.Phong (9A5)
25 tháng 7 2023 lúc 11:38

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left(2x+1\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)

\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

Võ Việt Hoàng
25 tháng 7 2023 lúc 12:02

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

 

Võ Việt Hoàng
25 tháng 7 2023 lúc 12:08

c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)

d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)

 

akai shu
Xem chi tiết
Bui Thu Phuong
Xem chi tiết
Không Tên
20 tháng 7 2018 lúc 18:45

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)  

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)

\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)\)

\(=x^{16}+x^8+1\)

Thanh Ngân
20 tháng 7 2018 lúc 18:50

\(\left(x^2+x+1\right)\left(x^2-x-1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)

\(=\left(x^4-x^3-x^2+x^3-x^2-x+x^2-x-1\right)\) \(\left(x^{32}-x^{16}+x^4-x^{16}+x^8-x^2+x^8-x^4+1\right)\)

\(=\left(x^4-x^2-2x-1\right)\left(x^{32}-2x^{16}+2x^8-x^2+1\right)\)

Bui Thu Phuong
20 tháng 7 2018 lúc 18:50

Cam on ban nhieu nha <3

Nguyễn Thị Mai Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 22:23

=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2

Đặt x+1/x=a(a>=2)

=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2

=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2

=>(x+4)^2=16

=>x+4=4 hoặc x+4=-4

=>x=-8;x=0

Gia Huy
20 tháng 6 2023 lúc 22:31

Điều kiện: \(x\ne0\)

\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\\ \Leftrightarrow\left(x+4\right)^2=16\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vì \(x\ne0\) nên \(S=\left\{-8\right\}\)

Dương Linh
Xem chi tiết
Alice
26 tháng 12 2020 lúc 9:53

ĐKXĐ: \(\left\{{}\begin{matrix}4-x\ge0\\x-1\ne0\\x^2+2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le4\\x\ne1\\\left(x+1\right)^2\ge0\end{matrix}\right.\)

Tập xác định: D=(\(-\infty;4\) ] \ {1}