Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngan Nguyen Thi Kim
Xem chi tiết
Cấm khóa nick
18 tháng 4 2020 lúc 15:57

kékduhchchdjjdj

Khách vãng lai đã xóa
Khoi Tran
Xem chi tiết
Lâm Tố Như
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2020 lúc 11:56

Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi

\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)

Khách vãng lai đã xóa
Lâm Tố Như
29 tháng 2 2020 lúc 22:14

giai cau duoi thoi nha

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 2 2020 lúc 19:49

Giới hạn này tiến đến đâu vậy bạn? 2 trường hợp khác nhau đúng ko?

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=1\)

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=-1\)

Khách vãng lai đã xóa
Lâm Tố Như
Xem chi tiết
Akai Haruma
20 tháng 3 2020 lúc 19:00

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Akai Haruma
16 tháng 3 2020 lúc 14:52

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Lâm Tố Như
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2020 lúc 22:53

Đây không phải giới hạn dạng vô định mà chỉ là giới hạn bình thường

\(=\frac{\sqrt[3]{19}-2\sqrt{2}}{0}=-\infty\)

Khách vãng lai đã xóa
Lâm Tố Như
Xem chi tiết
Thư Phan
Xem chi tiết

\(\lim_{x\to\infty}\left(\frac{1}{\sqrt[3]{n^3+1}-n}\right)=\lim_{x\to\infty}\left(\frac{1}{\frac{n^3+1-n^3}{\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2}}\right)\)

\(=\lim_{x\to\infty}\left(\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2\right)=\lim_{x\to\infty}\left\lbrack n^2\left(\sqrt[3]{\left(1+\frac{1}{n^3}\right)^2}+\sqrt[3]{1+\frac{1}{n^3}}+1\right)\right\rbrack=+\infty\)

\(\lim_{x\to\infty}\left(\sqrt[3]{n^3-2n^2}-n\right)\)

\(=\lim_{x\to\infty}\frac{n^3-2n^2-n^3}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\cdot\sqrt[3]{n^3-2n^2}+n^2}\)

\(=\lim_{x\to\infty}\frac{-2n^2}{n^2\cdot\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}=\lim_{x\to\infty}\frac{-2}{\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}\)

=-∞

Ngtong Nguyen
Xem chi tiết