Giải pt sau:
\(x^4+2x^3-2x^2+2x^{ }-3=0\)
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt và bất pt sau:
a.5|2x-1|-3=7
b.(2x+3)(x-2)-x^2+4=0
c. 2x-3/2<1-3x/-5
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
GIẢI PT SAU:
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\sqrt{x+1}+\sqrt{x-1}=4\)
a, ĐKXĐ: ...
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)
\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)
\(\Leftrightarrow4x^2-10x+3=0\)
.....
b, ĐKXĐ: ...
\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)
Giải pt bậc bốn sau
2x^4-x^3-9x^2+13x-5=0
x^4-2x^3-11x^2+12x+36=0
x^4-12x^3+x^2+x+1=0
1. C/m pt sau vô nghiệm
x^4 - 2x^3 + 3x^2 - 2x + 1 =0
2.giải pt
(x^2-4)^2=8x + 1
1. \(x^4-2x^3+3x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)
\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0
\(\Leftrightarrow\) x - 1 = 0 và x = 0
\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)
Vậy phương trình vô nghiệm.
2. \(\left(x^2-4\right)^2=8x+1\)
\(\Leftrightarrow x^4-8x^2+16=8x+1\)
\(\Leftrightarrow x^4-8x^2-8x+15=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) x - 3 = 0 \(\Leftrightarrow\) x = 3
3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)
Vậy tập nghiệm của pt là S = {1;3}.
giải pt:
a) x^5 + 2x^4 + 3x^3 + 3x^2 + 2x +1=0
b) x^4 + 3x^3 - 2x^2 + x - 3 = 0
a) \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)+x^3\left(x+1\right)+2x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+x^2+x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
Dễ thấy \(x^2+x+1>0\forall x;x^2+1>0\forall x\)
\(\Rightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy....
b) \(x^4+3x^3-2x^2+x-3=0\)
\(\Leftrightarrow x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0\)
\(\Leftrightarrow x^3\left(x-1\right)+4x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+2x+3\right)=0\)
...
\(\Leftrightarrow x=1\)
p/s: có bác nào giải đc pt \(x^3+4x^2+2x+3=0\)thì giúp nhé :))
Giải các PT sau:
a,(2x+1)(x^2+2)=0
b,(x^2+4)(7x-3)=0
c,(x^2+x+1)(6-2x)=0
d,(8x-4)(X^2+2x+2)=0
a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>
2x+1=0<=>x=\(-\frac{1}{2}\)
hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)
Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))
b)\(\left(x^2+4\right)\left(7x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)
\(x^2=-4\) vô lí
Vậy ..........
c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)
Vì \(x^2+x+1>0\)(dễ dàng c/m)
=>6-2x=0=>x=3
Vậy...
d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
<=>8x-4=0,x=\(\frac{1}{2}\)
hoặc \(x^2+2x+2=0\)(vô lí)
Vậy .....
Giải các pt sau:
a) (x-3)-(x-3)(2x-5)/6=(x-3)(3-x)/4
b) (2x-7)^2-x^2+8x-16=0
c) (3x+1)(x-3)=(3x+1)(2x-5)
\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)
Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)
\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\frac{24\left(x-3\right)}{24}-\frac{4\left(x-3\right)\left(2x-5\right)}{24}=-\frac{6\left(x-3\right)\left(x-3\right)}{24}\)
\(\Leftrightarrow24\left(x-3\right)-4\left(x-3\right)\left(2x-5\right)+6\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[24-4\left(2x-5\right)+6\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(24-8x+20+6x-18\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(26-2x\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(13-x\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\13-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=3\\x=13\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{3;13\right\}\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)