Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Phương Nguyễn
Xem chi tiết
Nguyễn Mạnh Khôi
7 tháng 3 2017 lúc 22:24

Xét A có: x=1 ; y=-1

=> a=y/x = -1/1 =-1

Xét B có: x=2 ; y=1

=> a=y/x=1/2=0.5

Xét c có : x=4 ; y=5

=> a=y/x=5/4=1.25

Vì a khác nhau nên A;B;C không thẳng hàng

Tuấn Anh Nguyễn Trần
11 tháng 4 2017 lúc 18:34

Bạn tìm đường thẳng đi qua 2 điểm A và B là \(\frac{x-x_a}{x_b-x_a}=\frac{y-y_a}{y_b-y_a}\)rồi thay tọa độ điểm C vào thấy k thỏa mãn phương trình đường thẳng thì => 3 điểm này k thẳng hàng

Sky Hoàng Nguyễn Fuck
2 tháng 12 2017 lúc 18:00

Xét A có: x=1 ; y=-1
=> a=y/x = -1/1 =-1
Xét B có: x=2 ; y=1
=> a=y/x=1/2=0.5
Xét c có : x=4 ; y=5
=> a=y/x=5/4=1.25
Vì a khác nhau nên A;B;C không thẳng hàng

chúc cậu hok tốt

Hà mỹ trang
Xem chi tiết
Etermintrude💫
24 tháng 5 2021 lúc 21:44

undefined

Huyền
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:43

Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC}  = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID}  = \left( {m - 4,n - 2} \right)\)

Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.

Vậy ta có:\(\overrightarrow {AI}  = \overrightarrow {IC} \)và \(\overrightarrow {BI}  = \overrightarrow {ID} \)

Ta có: \(\overrightarrow {AI}  = \left( {7;1} \right)\) và \(\overrightarrow {BI}  = \left( {5; - 1} \right)\)

Do \(\overrightarrow {AI}  = \overrightarrow {IC}  \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)

Do \(\overrightarrow {BI}  = \overrightarrow {ID}  \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)

Hoàng Anh Tú
Xem chi tiết
Trần Đức Thắng
10 tháng 11 2015 lúc 22:05

Gọi pt đường thẳng AB có dạng y =ax + b 

Tọa độ các điểm A ; B thỏa mãn pt y = ax + b nên ta có hpt :

3 = 2a + b 

-3 = -a + b 

..... 

nguyễn thị kim oanh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 7 2020 lúc 19:58

Muốn biết ba điểm có thẳng hàng hay không, ta xét chúng cùng thuộc một đồ thị hàm số hay không

Xét A(-3 ; 5)

=> xA = -3 ; yA = 5

=> 5 = a.(-3)

=> a = -5/3

=> A(-3 ; 5) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 1 )

Xét B( 2 ; -3 )

=> xB = 2 ; yB = -3

=> -3 = a.2

=> a = -3/2

=> B thuộc đồ thị hàm số \(y=-\frac{3}{2}x\)( 2 )

Xét C( 0, 6 ; -1 )

=> xC = 0, 6 ; yC = -1

=> -1 = a . 0, 6

=> a = \(\frac{-1}{0,6}=\frac{-1}{\frac{3}{5}}=-\frac{5}{3}\)

=> C( 0, 6 ; -1 ) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) 

=> Ba điểm A, B, C không thẳng hàng ( vì ba điểm không cùng thuộc một đồ thị hàm số )

Khách vãng lai đã xóa
Phan Văn Nam
23 tháng 7 2020 lúc 21:29

CTV nói thì cái j chả đúng

Khách vãng lai đã xóa
nguyễn thị kim oanh
24 tháng 7 2020 lúc 20:04

Cho mik hỏi phương pháp để làm những bài toán kiểu này với bạn?

Khách vãng lai đã xóa
Nguyễn Vân Anh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 11 2021 lúc 15:29

a. \(\overrightarrow{AB}=\left(2;0\right)\) ; \(\overrightarrow{BC}=\left(-3;3\right)\) ; \(\overrightarrow{CA}=\left(1;-3\right)\)

b. Do \(\dfrac{2}{-3}\ne\dfrac{0}{3}\Rightarrow\) hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương

\(\Rightarrow\) 3 điểm A;B;C không thẳng hàng

c.

\(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}=\dfrac{5}{2}\\y_M=\dfrac{y_B+y_C}{2}=\dfrac{3}{2}\end{matrix}\right.\)  \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_N=\dfrac{x_C+x_A}{2}=\dfrac{3}{2}\\y_N=\dfrac{y_C+y_A}{2}=\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_P=\dfrac{x_A+x_B}{2}=3\\y_P=\dfrac{y_A+y_B}{2}=0\end{matrix}\right.\) \(\Rightarrow P\left(3;0\right)\)

Lê Hà Ny
Xem chi tiết

E trên trục hoành nên E(x;0)

A(6;3); B(-3;6); E(x;0)

\(\overrightarrow{AB}=\left(-9;3\right);\overrightarrow{AE}=\left(x-6;-3\right)\)

Để A,B,E thẳng hàng thì \(\dfrac{x-6}{-9}=\dfrac{-3}{3}=-1\)

=>x-6=9

=>x=15

Vậy: E(15;0)

Do E thuộc trục hoành nên tọa độ có dạng \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AE}=\left(x-6;-3\right)\end{matrix}\right.\)

3 điểm A, B, E thẳng hàng khi:

\(\dfrac{x-6}{-9}=\dfrac{-3}{3}\Rightarrow x-6=9\)

\(\Rightarrow x=15\Rightarrow E\left(15;0\right)\)