Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):\(y=2x-m+1\) (với m là tham số) và parabol (P): .
a) Tìm m để đường thẳng (d) đi qua điểm A (–1; 3).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho \(x_1x_2\left(y_1+y_2\right)+6=0\) .
Trong mặt phẳng tọa độ Oxy, parabol y=x2 cắt đường thẳng y=3x+4 tại hai điểm A, B phân biệt. Tìm trên trục Ox điểm C để CA+ CB đạt nhỏ nhất.
-Giúp mình với ;-;
Bài 4: cho parabol (P) : y = ax2
a) Tìm a biết (P) đi qua điểm C( -4;-4). Vẽ (P) với a vừa tìm được và vẽ đường thẳng (d)
y = \(\dfrac{x}{4}\)– 3 trên cùng mặt phẳng tọa độ
b) Tìm tọa độ điểm của (p) và (d) bằng phép tính
Cho parabol (P): y =\(\dfrac{1}{2}x^2\)
a) Hai điểm A,B thuộc (P) có hoành độ lần lượt là 2;-1. Tìm tọa độ điểm A,B.
b) Viết phương trình đường thẳng đi qua hai điểm A và B
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y=(m+2)x-m+3 và parabol (P): y=x2
a) Tìm tọa độ giao điểm của (P) và (d) khi m=3
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x21 + x22+ x1x2≤5
Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2 và đường thẳng (d): y= \(2mx-2m+3\) (m là tham số). Chứng minh rằng (P) và (d) cắt nhau tại hai điểm phân biệt với mọi m
trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=nx-3 và parabol (p) y=\(x^2\)
1. tìm n để đường thẳng (d) đi qua điểm B(1;0)
2. tìm n để (d)cắt (p) tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\)thỏa mản \(\left|x_1-x_2\right|=2\)
hãy vẽ parabol (p) và đường thẳng (d) trên cùng mặt phẳng tọa độ. Tìm tọa độ giao điểm của chúng bằng phép tính: (p) :y =x2 và (d) :y =x-3
Trong hệ trục tọa độ Oxy, cho đường thẳng (d): y=6x+b và parabol (P): y=a\(x^2\) (a≠0)
a) Tìm giá trị của b để đường thẳng (d) đi qua điểm M(0;9).
b) Với b tìm được, tìm giá trị câu a để (d) tiếp xúc với (P).