Thu gọn :
(x+1)(x+2)(x-3)-(x-1)(x-2)(x+1)
thu gọn (x-2)^2-(x-2).(x+3)
b) (x+1)^2 +(x-3)^2-2.(x+1).(x-3)
Ta có : \(\left(x-2\right)^2-\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(x-2-x-3\right)\)
\(=-5\left(x-2\right)\)
Ta có : \(\left(x+1\right)^2+\left(x-3\right)^2-2\left(x+1\right)\left(x-3\right)\)
\(=\left(x+1-x+3\right)^2=4^2=16\)
`(x-2)^2-(x-2)(x+3)`
`=x^2-4x+4-(x^2+3x-2x-6)`
`=x^2-4x+4-x^2-x+6`
`=-5x+10`
`b)(x+1)^2+(x-3)^2-2(x+1)(x-3)`
`=(x+1)^2-2(x+1)(x-3)+(x-3)^2`
`=[(x+1)-(x-3)]^2`
`=(x+1-x+3)^2`
`=4^2=16`
Thu gọn \(Q=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}-\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
Lời giải:
ĐKXĐ: $x\neq -1; x\neq 0; x\neq 2$
\(Q=1+\left[\frac{x+1}{(x+1)(x^2-x+1)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2(x-2)}{x(x^2-x+1)}\)
\(=1+\left[\frac{1}{x^2-x+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right].\frac{x^2-x+1}{x-2}\)
\(=1+(\frac{2}{x^2-x+1}-\frac{2}{x+1}).\frac{x^2-x+1}{x-2}\\ =1+\frac{2}{x-2}-\frac{2(x^2-x+1)}{(x+1)(x-2)}=\frac{x}{x-2}-\frac{2x^2-2x+2}{(x+1)(x-2)}\)
\(=\frac{x(x+1)-(2x^2-2x+2)}{(x+1)(x-2)}=\frac{-x^2+3x-2}{(x+1)(x-2)}=\frac{(1-x)(x-2)}{(x+1)(x-2)}=\frac{1-x}{1+x}\)
Câu 5. Khai triển và thu gọn:
a) (x + 1)2 – (x – 2)2
b) (x – 3)(x – 1) – (2x – 1)2
c) (x + 3)2 - 2(x + 3)(1 – x) + (1 - x)2
a)(x + 1)2 – (x – 2)2
= (x+1-x+2)(x+1+x-2)
= 3(2x-1)
b)(x – 3)(x – 1) – (2x – 1)2
= x2-4x+3-4x2+4x-1
= -(3x2-2)
c)(x + 3)2 - 2(x + 3)(1 – x) + (1 - x)2
= [(x+3)-(1-x)]2
=(2x-2)2=4(x-1)2
Thu gọn phép tính: x-1/x-2:(x-2/x-3:x-3/x-1)
Làm như vậy nè :
=X-1/X-2 : (X-2/X-3 x X-1/X-3)
=X-1/X-2 : (X-2)x(X-1)/(X-3)2
=X-1/X-2 x (X-3)2 /(X-2) x(X-1)
=(x-3)2/(X-2)2
DẤU / LÀ DẤU PHẦN NHÉ
Khai triển và thu gọn:
1, x(3x - 1) - 2x(x - 1) - (x - 2)2
2, x(2 + x) - (x - 1)(3 - x)-(3 - x)2
3, (2x - 1)2 - 2(2x - 1)(2x - 3) + (3 - 2x)2
thu gọn
\(2x(x-2)+5(x+3)+3(x+1)\)
\(5x^2-2(x+1)+3x(x-2)+5\)
\(2x\left(x-2\right)+5\left(x+3\right)+3\left(x+1\right).\)
\(=2x^2-4x+5x+15+3x+3=2x^2+4x+18.\)
\(5x^2-2\left(x+1\right)+3x\left(x-2\right)+5.\)
\(=5x^2-2x-2+3x^2-6x+5=8x^2-8x+3.\)
thu gọn 4x.(x-3)-3x.(2+x)b) 2x.(5x+2)+(2x-3).(3x-1)c) (x-1)^2 -(x+2).(x-2)d) (1+2x)+2.(1+2x).(x-1)+(x-1)^2
\(a/4x\left(x-3\right)-3x\left(2+x\right)\\ =4x.x-4x.3-3x.2-3x.x\\ =4x^2-12x-6x-3x^2\\ =x^2-18x\\ b/2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\\ =2x.5x+2x.2+2x.3x-2x.1-3.3x+3.1\\ =10x^2+4x+6x^2-2x-9x+3\\ =16x^2-7x+3\)
Thu gọn
\(\left(\dfrac{3}{x-1}+\dfrac{x+3}{x^2-1}\right):\left(\dfrac{x+2}{x^2+x-2}-\dfrac{x}{x+2}\right)\)
Ta có: \(\left(\dfrac{3}{x-1}+\dfrac{x+3}{x^2-1}\right):\left(\dfrac{x+2}{x^2+x-2}-\dfrac{x}{x+2}\right)\)
\(=\dfrac{3\left(x+1\right)+x+3}{\left(x-1\right)\left(x+1\right)}:\dfrac{x+2-x\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{3x+3+x+3}{\left(x-1\right)\left(x+1\right)}:\dfrac{x+2-x^2+x}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{4x+6}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+2\right)\left(x-1\right)}{-x^2+2x+2}\)
\(=\dfrac{\left(4x+6\right)\left(x+2\right)}{\left(-x^2+2x+2\right)\left(x+1\right)}\)
Cho đa thức M(x)=(x^3/2-1/2*x^4+1/2*x^2+1/3*x)-(-1/2*x^4+x^2+x/3)Thu gọn và chứng minh M(x) thuộc Z vs mọi x thuộc Z